Skew Killing spinors

Georges Habib; Julien Roth

Open Mathematics (2012)

  • Volume: 10, Issue: 3, page 844-856
  • ISSN: 2391-5455

Abstract

top
We study the existence of a skew Killing spinor on 2- and 3-dimensional Riemannian spin manifolds. We establish the integrability conditions and prove that these spinor fields correspond to twistor spinors in the two dimensional case while, up to a conformal change of the metric, they correspond to parallel spinors in the three dimensional case.

How to cite

top

Georges Habib, and Julien Roth. "Skew Killing spinors." Open Mathematics 10.3 (2012): 844-856. <http://eudml.org/doc/269135>.

@article{GeorgesHabib2012,
abstract = {We study the existence of a skew Killing spinor on 2- and 3-dimensional Riemannian spin manifolds. We establish the integrability conditions and prove that these spinor fields correspond to twistor spinors in the two dimensional case while, up to a conformal change of the metric, they correspond to parallel spinors in the three dimensional case.},
author = {Georges Habib, Julien Roth},
journal = {Open Mathematics},
keywords = {Spin structures; Isometric immersions; Symmetric Codazzi tensor; Conformally flat; spin structures; isometric immersions; symmetric Codazzi tensor; conformally flat},
language = {eng},
number = {3},
pages = {844-856},
title = {Skew Killing spinors},
url = {http://eudml.org/doc/269135},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Georges Habib
AU - Julien Roth
TI - Skew Killing spinors
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 844
EP - 856
AB - We study the existence of a skew Killing spinor on 2- and 3-dimensional Riemannian spin manifolds. We establish the integrability conditions and prove that these spinor fields correspond to twistor spinors in the two dimensional case while, up to a conformal change of the metric, they correspond to parallel spinors in the three dimensional case.
LA - eng
KW - Spin structures; Isometric immersions; Symmetric Codazzi tensor; Conformally flat; spin structures; isometric immersions; symmetric Codazzi tensor; conformally flat
UR - http://eudml.org/doc/269135
ER -

References

top
  1. [1] Bär Chr., Real Killing Spinors and Holonomy, Comm. Math. Phys., 1993, 154(3), 509–521 http://dx.doi.org/10.1007/BF02102106 Zbl0778.53037
  2. [2] Bär Chr., Gauduchon P., Moroianu A., Generalized cylinders in semi-Riemannian and spin geometry, Math. Z., 2005, 249(3), 545–580 http://dx.doi.org/10.1007/s00209-004-0718-0 Zbl1068.53030
  3. [3] Baum H., Complete Riemannian manifolds with imaginary Killing spinors, Ann. Global Anal. Geom., 1989, 7(3), 205–226 http://dx.doi.org/10.1007/BF00128299 Zbl0694.53043
  4. [4] Baum H., Friedrich Th., Grunewald R., Kath I., Twistor and Killing Spinors on Riemannian Manifolds, Teubner-Texte Math., 124, Teubner, Stuttgart-Leipzig, 1991 Zbl0705.53004
  5. [5] Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., A spinorial approach to Riemannian and conformal geometry (in preparation) Zbl06455648
  6. [6] Friedrich Th., On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phys., 1998, 28(1–2), 143–157 http://dx.doi.org/10.1016/S0393-0440(98)00018-7 Zbl0966.53042
  7. [7] Ginoux N., The Dirac Spectrum, Lecture Notes in Math., 1976, Springer, Berlin, 2009 Zbl1186.58020
  8. [8] Hijazi O., Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys., 1995, 16(1), 27–38 http://dx.doi.org/10.1016/0393-0440(94)00019-Z 
  9. [9] Kusner R., Schmitt N., The spinor representation of surfaces in space, preprint available at http://arxiv.org/abs/dgga/9610005 
  10. [10] Lawn M.-A., Roth J., Spinorial characterizations of surfaces into 3-dimensional pseudo-Riemannian space forms, Math. Phys. Anal. Geom., 2011, 14(3), 185–195 http://dx.doi.org/10.1007/s11040-011-9093-3 Zbl1242.53019
  11. [11] Morel B., Surfaces in 𝕊 3 and 3 via spinors, In: Semin. Theor. Spectr. Geom., 23, Univ. Grenoble I, Institut Fourier, Saint-Martin-d’Hères, 2005, 131–144 Zbl1106.53004
  12. [12] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York-London, 1983 
  13. [13] Wang McK.Y., Parallel spinors and parallel forms, Ann. Global Anal. Geom., 1989, 7(1), 59–68 http://dx.doi.org/10.1007/BF00137402 Zbl0688.53007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.