Skew Killing spinors
Open Mathematics (2012)
- Volume: 10, Issue: 3, page 844-856
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGeorges Habib, and Julien Roth. "Skew Killing spinors." Open Mathematics 10.3 (2012): 844-856. <http://eudml.org/doc/269135>.
@article{GeorgesHabib2012,
abstract = {We study the existence of a skew Killing spinor on 2- and 3-dimensional Riemannian spin manifolds. We establish the integrability conditions and prove that these spinor fields correspond to twistor spinors in the two dimensional case while, up to a conformal change of the metric, they correspond to parallel spinors in the three dimensional case.},
author = {Georges Habib, Julien Roth},
journal = {Open Mathematics},
keywords = {Spin structures; Isometric immersions; Symmetric Codazzi tensor; Conformally flat; spin structures; isometric immersions; symmetric Codazzi tensor; conformally flat},
language = {eng},
number = {3},
pages = {844-856},
title = {Skew Killing spinors},
url = {http://eudml.org/doc/269135},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Georges Habib
AU - Julien Roth
TI - Skew Killing spinors
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 844
EP - 856
AB - We study the existence of a skew Killing spinor on 2- and 3-dimensional Riemannian spin manifolds. We establish the integrability conditions and prove that these spinor fields correspond to twistor spinors in the two dimensional case while, up to a conformal change of the metric, they correspond to parallel spinors in the three dimensional case.
LA - eng
KW - Spin structures; Isometric immersions; Symmetric Codazzi tensor; Conformally flat; spin structures; isometric immersions; symmetric Codazzi tensor; conformally flat
UR - http://eudml.org/doc/269135
ER -
References
top- [1] Bär Chr., Real Killing Spinors and Holonomy, Comm. Math. Phys., 1993, 154(3), 509–521 http://dx.doi.org/10.1007/BF02102106 Zbl0778.53037
- [2] Bär Chr., Gauduchon P., Moroianu A., Generalized cylinders in semi-Riemannian and spin geometry, Math. Z., 2005, 249(3), 545–580 http://dx.doi.org/10.1007/s00209-004-0718-0 Zbl1068.53030
- [3] Baum H., Complete Riemannian manifolds with imaginary Killing spinors, Ann. Global Anal. Geom., 1989, 7(3), 205–226 http://dx.doi.org/10.1007/BF00128299 Zbl0694.53043
- [4] Baum H., Friedrich Th., Grunewald R., Kath I., Twistor and Killing Spinors on Riemannian Manifolds, Teubner-Texte Math., 124, Teubner, Stuttgart-Leipzig, 1991 Zbl0705.53004
- [5] Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., A spinorial approach to Riemannian and conformal geometry (in preparation) Zbl06455648
- [6] Friedrich Th., On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phys., 1998, 28(1–2), 143–157 http://dx.doi.org/10.1016/S0393-0440(98)00018-7 Zbl0966.53042
- [7] Ginoux N., The Dirac Spectrum, Lecture Notes in Math., 1976, Springer, Berlin, 2009 Zbl1186.58020
- [8] Hijazi O., Lower bounds for the eigenvalues of the Dirac operator, J. Geom. Phys., 1995, 16(1), 27–38 http://dx.doi.org/10.1016/0393-0440(94)00019-Z
- [9] Kusner R., Schmitt N., The spinor representation of surfaces in space, preprint available at http://arxiv.org/abs/dgga/9610005
- [10] Lawn M.-A., Roth J., Spinorial characterizations of surfaces into 3-dimensional pseudo-Riemannian space forms, Math. Phys. Anal. Geom., 2011, 14(3), 185–195 http://dx.doi.org/10.1007/s11040-011-9093-3 Zbl1242.53019
- [11] Morel B., Surfaces in and via spinors, In: Semin. Theor. Spectr. Geom., 23, Univ. Grenoble I, Institut Fourier, Saint-Martin-d’Hères, 2005, 131–144 Zbl1106.53004
- [12] O’Neill B., Semi-Riemannian Geometry, Pure Appl. Math., 103, Academic Press, New York-London, 1983
- [13] Wang McK.Y., Parallel spinors and parallel forms, Ann. Global Anal. Geom., 1989, 7(1), 59–68 http://dx.doi.org/10.1007/BF00137402 Zbl0688.53007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.