The inverse N -body problem. A geometrical approach

R. Weder

Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995)

  • page 1-7

How to cite

top

Weder, R.. "The inverse $N$-body problem. A geometrical approach." Séminaire Équations aux dérivées partielles (Polytechnique) (1994-1995): 1-7. <http://eudml.org/doc/112107>.

@article{Weder1994-1995,
author = {Weder, R.},
journal = {Séminaire Équations aux dérivées partielles (Polytechnique)},
keywords = {inverse potential scattering; uniqueness; high velocity limit of the scattering operator; Dollard scattering operators; external electric field},
language = {eng},
pages = {1-7},
publisher = {Ecole Polytechnique, Centre de Mathématiques},
title = {The inverse $N$-body problem. A geometrical approach},
url = {http://eudml.org/doc/112107},
year = {1994-1995},
}

TY - JOUR
AU - Weder, R.
TI - The inverse $N$-body problem. A geometrical approach
JO - Séminaire Équations aux dérivées partielles (Polytechnique)
PY - 1994-1995
PB - Ecole Polytechnique, Centre de Mathématiques
SP - 1
EP - 7
LA - eng
KW - inverse potential scattering; uniqueness; high velocity limit of the scattering operator; Dollard scattering operators; external electric field
UR - http://eudml.org/doc/112107
ER -

References

top
  1. [1] V. Enss and R. Weder, "Inverse potential scattering: a geometrical approach". Included in "Mathematical Quantum Theory II: Schrödinger Operators", Proceedings of the Summer School in Mathematical Quantum Theory, August 1993, Vancouver, B. C., J. Feldman, R. Froese, and L. Rosen, editors, CRM Proceedings and Lecture Notes 8, AMS Providence (1995). Zbl0838.35092MR1332039
  2. [2] V. Enss and R. Weder, "Uniqueness and Reconstruction Formulae for inverse N-particle scattering ", To appear in: "Differential Equations and Mathematical Physics ", Proceedings of the International Conference, Univ. of Alabama at Birmingham, March 1994, I. Knowles editor, International PressBoston (ca. 1995). Zbl0929.35121MR1703572
  3. [3] V. Enss and R. Weder, "The geometrical approach to multidimensional inverse scattering", preprint (1995), to appear in J. Math. Phys.. Zbl0849.35094MR1341964
  4. [4] R. Weder, "Multidimensional inverse scattering in an electric field". Preprint IIMAS-UNAM (1995). Zbl0868.47011MR1402772
  5. [5] L. Hörmander, "The existence of wave operators in scattering theory", Math. Z.146, 69- 91 (1976). Zbl0319.35059MR393884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.