Applications moment, polygones de configurations et groupes discrets de réflexions complexes dans P U ( 2 , 1 )

Julien Paupert[1]

  • [1] Department of Mathematics Johns Hopkins University 3400 N. Charles Street Baltimore, MD 21218, USA

Séminaire de théorie spectrale et géométrie (2005-2006)

  • Volume: 24, page 45-60
  • ISSN: 1624-5458

How to cite

top

Paupert, Julien. "Applications moment, polygones de configurations et groupes discrets de réflexions complexes dans $PU(2,1)$." Séminaire de théorie spectrale et géométrie 24 (2005-2006): 45-60. <http://eudml.org/doc/11213>.

@article{Paupert2005-2006,
affiliation = {Department of Mathematics Johns Hopkins University 3400 N. Charles Street Baltimore, MD 21218, USA},
author = {Paupert, Julien},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {45-60},
publisher = {Institut Fourier},
title = {Applications moment, polygones de configurations et groupes discrets de réflexions complexes dans $PU(2,1)$},
url = {http://eudml.org/doc/11213},
volume = {24},
year = {2005-2006},
}

TY - JOUR
AU - Paupert, Julien
TI - Applications moment, polygones de configurations et groupes discrets de réflexions complexes dans $PU(2,1)$
JO - Séminaire de théorie spectrale et géométrie
PY - 2005-2006
PB - Institut Fourier
VL - 24
SP - 45
EP - 60
LA - fre
UR - http://eudml.org/doc/11213
ER -

References

top
  1. M. F. Atiyah ; Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14(1) (1982), 1–15. Zbl0482.58013MR642416
  2. A. Alekseev, A. Malkin, E. Meinrenken ; Lie group valued moment maps. J. Diff. Geom. 48(3) (1998), 445–495. Zbl0948.53045MR1638045
  3. S. Agnihotri, C. Woodward ; Eigenvalues of products of unitary matrices and quantum Schubert calculus. Math. Res. Lett. 5(6) (1998), 817–836. Zbl1004.14013MR1671192
  4. P. Belkale ; Local systems on P 1 - S for S a finite set. Compositio Math. 129(1) (2001), 67–86. Zbl1042.14031MR1856023
  5. I. Biswas ; A criterion for the existence of a parabolic stable bundle of rank two over the projective line. Internat. J. Math. 9(5) (1998), 523–533. Zbl0939.14015MR1644048
  6. I. Biswas ; On the existence of unitary flat connections over the punctured sphere with given local monodromy around the punctures. Asian J. Math. 3(2) (1999), 333–344. Zbl0982.14022MR1796505
  7. J.H. Conway, A.J. Jones. Trigonometric diophantine equations (On vanishing sums of roots of unity). Acta Arithmetica 30 (1976), 229–240. Zbl0349.10014MR422149
  8. P. Deligne, G. D. Mostow ; Monodromy of hypergeometric functions and non-lattice integral monodromy. Publ. Math. IHES 63 (1986), 5–89. Zbl0615.22008MR849651
  9. M. Deraux, E. Falbel, J. Paupert ; New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math. 194 (2005), 155–201. Zbl1113.22010MR2231340
  10. E. Falbel, J. Paupert ; Fundamental domains for finite subgroups in U ( 2 ) and configurations of Lagrangians. Geom. Dedicata 109 (2004), 221–238. Zbl1108.51018MR2114077
  11. E. Falbel, R. Wentworth ; Eigenvalues of products of unitary matrices and Lagrangian involutions. Topology 45 (2006), 65–99. Zbl1081.58006MR2170495
  12. E. Falbel, R. Wentworth ; Produits d’isométries d’un espace symétrique de rang un et compacité à la Mumford-Mahler. Preprint 2006. 
  13. E. Falbel, V. Zocca ; A Poincaré’s polyhedron theorem for complex hyperbolic geometry. J. Reine Angew. Math. 516 (1999), 138–158. Zbl0944.53042
  14. W. Fulton ; Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Amer. Math. Soc. 37(3) (2000), 209–249. Zbl0994.15021MR1754641
  15. W.M. Goldman ; Complex Hyperbolic Geometry. Oxford Mathematical Monographs. Oxford Science Publications (1999). Zbl0939.32024MR1695450
  16. V. Guillemin, S. Sternberg ; Convexity properties of the moment mapping. Invent. Math. 67(3) (1982), 491–513. Zbl0503.58017MR664117
  17. V. Guillemin, S. Sternberg ; Convexity properties of the moment mapping II. Invent. Math. 77(3) (1984), 533–546. Zbl0561.58015MR759258
  18. V. T. Khoi ; On the S U ( 2 , 1 ) character variety of the Brieskorn homology spheres. Preprint. 
  19. A. Klyachko ; Stable bundles, representation theory and Hermitian operators. Selecta Math. (NS) 4(3) (1998), 419–445. Zbl0915.14010MR1654578
  20. A. Klyachko ; Vector bundles, linear representations, and spectral problems. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 599–613, Higher Ed. Press, Beijing (2002). Zbl1062.14054MR1957068
  21. V. P. Kostov ; The Deligne-Simpson problem–a survey. J. Algebra 281 (2004), 83–108. Zbl1066.15016MR2091962
  22. G. D. Mostow ; On a remarkable class of polyhedra in complex hyperbolic space. Pacific J. Math. 86 (1980), 171–276. Zbl0456.22012MR586876
  23. G. D. Mostow ; Generalized Picard lattices arising from half-integral conditions. Publ. Math. IHES 63 (1986), 91–106. Zbl0615.22009MR849652
  24. J. R. Parker ; Unfaithful complex hyperbolic triangle groups. Prépublication (2005). 
  25. J. R. Parker, J. Paupert ; Unfaithful complex hyperbolic triangle groups II : Higher order reflections. En préparation. 
  26. J. Paupert ; Configurations de lagrangiens, domaines fondamentaux et sous-groupes discrets de P U ( 2 , 1 ) . Thèse de doctorat de l’Université Paris 6 (2005). http://www.institut.math.jussieu.fr/theses/2005/paupert/ 
  27. J. Paupert ; Elliptic triangle groups in P U ( 2 , 1 ) , Lagrangian triples and momentum maps. Preprint (2006). A paraître dans Topology. Zbl1131.22010MR2313070
  28. J.K. Sauter ; Isomorphisms among monodromy groups and applications to lattices in P U ( 1 , 2 ) . Pacific J.Maths. 146 (1990), 331–384. Zbl0759.22013MR1078386
  29. F. Schaffhauser ; Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups. Thèse de doctorat de l’Université Paris 6, 2005. 
  30. R. E. Schwartz ; Complex hyperbolic triangle groups. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 339–349, Higher Ed. Press, Beijing, 2002. Zbl1022.53034MR1957045
  31. W. P. Thurston ; Shapes of polyhedra and triangulations of the sphere. Geometry and Topology Monographs 1, the Epstein Birthday Schrift (1998), 511–549. Zbl0931.57010MR1668340
  32. A. Weinstein ; Poisson geometry of discrete series orbits, and momentum convexity for noncompact group actions. Lett. Math. Phys. 56(1) (2001), 17-30. Zbl1010.53060MR1848163
  33. P. Will ; Groupes libres, groupes triangulaires et tore épointé dans P U ( 2 , 1 ) . Thèse de doctorat de l’Université Paris 6 (2006). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.