Displaying similar documents to “Applications moment, polygones de configurations et groupes discrets de réflexions complexes dans P U ( 2 , 1 )

Groupes aléatoires

Étienne Ghys (2002-2003)

Séminaire Bourbaki

Similarity:

Quelles sont les propriétés d’un groupe de présentation finie “tiré au hasard” ? La réponse à cette question dépend bien entendu de la méthode choisie pour le tirage au sort. On peut par exemple fixer n générateurs et choisir p relations aléatoirement parmi les mots de longueur L , puis faire tendre L vers l’infini. On peut aussi choisir un graphe fini, étiqueter aléatoirement ses arêtes par des générateurs, et considérer le groupe engendré par ces générateurs, soumis aux relations lues...

Autour des groupes cycliquement ordonnés

G. Leloup (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Ce travail commence par rappeler les définitions et les résultats de base concernant les groupes cycliquement ordonnés, et mentionner différents domaines où ils apparaissent. Ensuite sont exposés quelques développements, notamment sur la théorie du premier ordre, les séries formelles à exposants dans un groupe cycliquement ordonné, les groupes valués dont la valuation est à valeurs dans un ensemble cycliquement ordonné, et un analogue pour les espaces ultramétriques.

Nouvelles approches de la propriété (T) de Kazhdan

Alain Valette (2002-2003)

Séminaire Bourbaki

Similarity:

Un groupe localement compact G a la propriété (T) de Kazhdan si la 1 -cohomologie de tout G -module hilbertien est nulle. Cette propriété de rigidité de la théorie des représentations de G a trouvé des applications qui vont de la théorie ergodique à la théorie des graphes. Pendant près de 30 ans, les seuls exemples connus de groupes avec la propriété (T), provenaient des groupes algébriques simples sur les corps locaux, ou de leurs réseaux. La situation a radicalement changé ces dernières...

Complète réductibilité

Jean-Pierre Serre (2003-2004)

Séminaire Bourbaki

Similarity:

La notion de complète réductibilité d’une représentation linéaire Γ 𝐆𝐋 n peut se définir en termes de l’action de Γ sur l’immeuble de Tits de 𝐆𝐋 n . Cela suggère une notion analogue pour tous les immeubles sphériques, et donc aussi pour tous les groupes réductifs. On verra comment cette notion se traduit en termes topologiques et quelles applications on peut en tirer.

La conjecture des soufflets

Jean-Marc Schlenker (2002-2003)

Séminaire Bourbaki

Similarity:

On sait depuis les travaux de Bricard et de Connelly qu’il existe dans l’espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.

Sur la théorie élémentaire des groupes libres

Frédéric Paulin (2002-2003)

Séminaire Bourbaki

Similarity:

Sela a annoncé une solution complète d’un problème de Tarski, qui demanda vers 1945 quels sont les groupes de type fini qui ont la même théorie élémentaire qu’un groupe libre. Nous discuterons des travaux de Remeslennikov, Kharlampovich-Myasnikov, Sela, Champetier-Guirardel et autres sur la structure des (les groupes de type fini qui sont “limites”de groupes libres, ou encore, qui ont la même théorie universelle qu’un groupe libre). Nous indiquerons quelques outils utilisés par Sela...

Lemme fondamental et endoscopie, une approche géométrique

Jean-François Dat (2004-2005)

Séminaire Bourbaki

Similarity:

Le “principe de fonctorialité”, conjecturé par Langlands à la fin des années 60, est un moyen remarquablement synthétique d’unifier et exprimer certains liens profonds entre formes automorphes, arithmétique et géométrie algébrique. Son apparente simplicité contraste fortement avec la difficulté des techniques utilisées pour l’aborder. Parmi celles-ci, la stabilisation de la formule des traces d’Arthur–Selberg bute depuis 25 ans sur une conjecture d’analyse harmonique sur des groupes...

Correspondances de Hecke, action de Galois et la conjecture d’André–Oort

Rutger Noot (2004-2005)

Séminaire Bourbaki

Similarity:

Soient M une variété de Shimura, Z M fermée et irréductible et S Z ( ) un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, Z est une sous-variété de type Hodge. Par exemple, si M est un espace de modules de variétés abéliennes, S est un ensemble de points correspondant à des variétés de type CM et Z doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev...

Amibes de variétés algébriques et dénombrement de courbes

Ilia Itenberg (2002-2003)

Séminaire Bourbaki

Similarity:

Les des variétés algébriques dans ( * ) n sont les images de ces variétés par l’application des moments Log : ( * ) n n , Log : ( z 1 , ... , z n ) ( log | z 1 | , ... , log | z n | ) . Des résultats obtenus par G. Mikhalkin montrent l’utilité des amibes pour l’étude des variétés algébriques réelles et complexes. Les amibes peuvent être déformées en des complexes polyédraux appelés. Cette déformation permet, en particulier, de calculer les invariants de Gromov-Witten du plan projectif et d’autres surfaces toriques en dénombrant des courbes tropicales.