Large-scale isoperimetry on locally compact groups and applications

Romain Tessera[1]

  • [1] Vanderbilt University Department of mathematics StevensonCenter, Nashville, TN 37240 United

Séminaire de théorie spectrale et géométrie (2006-2007)

  • Volume: 25, page 179-188
  • ISSN: 1624-5458

Abstract

top
We introduce various notions of large-scale isoperimetric profile on a locally compact, compactly generated amenable group. These asymptotic quantities provide measurements of the degree of amenability of the group. We are particularly interested in a class of groups with exponential volume growth which are the most amenable possible in that sense. We show that these groups share various interesting properties such as the speed of on-diagonal decay of random walks, the vanishing of the reduced first L p -cohomology, or the existence of proper isometric actions on L p whose orbits are almost quasi-isometries.

How to cite

top

Tessera, Romain. "Large-scale isoperimetry on locally compact groups and applications." Séminaire de théorie spectrale et géométrie 25 (2006-2007): 179-188. <http://eudml.org/doc/11223>.

@article{Tessera2006-2007,
abstract = {We introduce various notions of large-scale isoperimetric profile on a locally compact, compactly generated amenable group. These asymptotic quantities provide measurements of the degree of amenability of the group. We are particularly interested in a class of groups with exponential volume growth which are the most amenable possible in that sense. We show that these groups share various interesting properties such as the speed of on-diagonal decay of random walks, the vanishing of the reduced first $L^p$-cohomology, or the existence of proper isometric actions on $L^p$ whose orbits are almost quasi-isometries.},
affiliation = {Vanderbilt University Department of mathematics StevensonCenter, Nashville, TN 37240 United},
author = {Tessera, Romain},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {amenable; -isoperimetric profile; elementary solvable group; geometrically elementary solvable group; random walk; -cohomology},
language = {eng},
pages = {179-188},
publisher = {Institut Fourier},
title = {Large-scale isoperimetry on locally compact groups and applications},
url = {http://eudml.org/doc/11223},
volume = {25},
year = {2006-2007},
}

TY - JOUR
AU - Tessera, Romain
TI - Large-scale isoperimetry on locally compact groups and applications
JO - Séminaire de théorie spectrale et géométrie
PY - 2006-2007
PB - Institut Fourier
VL - 25
SP - 179
EP - 188
AB - We introduce various notions of large-scale isoperimetric profile on a locally compact, compactly generated amenable group. These asymptotic quantities provide measurements of the degree of amenability of the group. We are particularly interested in a class of groups with exponential volume growth which are the most amenable possible in that sense. We show that these groups share various interesting properties such as the speed of on-diagonal decay of random walks, the vanishing of the reduced first $L^p$-cohomology, or the existence of proper isometric actions on $L^p$ whose orbits are almost quasi-isometries.
LA - eng
KW - amenable; -isoperimetric profile; elementary solvable group; geometrically elementary solvable group; random walk; -cohomology
UR - http://eudml.org/doc/11223
ER -

References

top
  1. T. Coulhon. (2000). Random walks and geometry on infinite graphs. Lecture notes on analysis on metric spaces, Luigi Ambrosio, Francesco Serra Cassano, eds., 5-30. Zbl1063.60063MR2023121
  2. P.A. Cherix, M. Cowling, P. Jolissaint, P. Julg, A. Valette. Groups with the Haagerup Property. Birkhäuser, Progress in Mathematics 197, 2001. Zbl1030.43002MR1852148
  3. T. Coulhon and A. Grigor’yan, A geometric approach to on-diagonal heat kernel lower bounds on groups Contemp. Math. , A.M.S. (2004) 65-99., Ann. Inst. Fourier, 51, 6 (2001) 1763-1827. Zbl1137.58307
  4. A. Cheeger, M. Gromov. L 2 -cohomology and group cohomology. Topology 25, 189-215, 1986. Zbl0597.57020MR837621
  5. T. Coulhon et L. Saloff-Coste. (1995). Variétés riemanniennes isométriques à l’infini. Rev. Mat. Iberoamericana 11, 3, 687-726. Zbl0845.58054
  6. T. Coulhon et L. Saloff-Coste. (1993).Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoamericana 9, 2, 293-314. Zbl0782.53066MR1232845
  7. Y. de Cornulier, R. Tessera, Alain Valette. Isometric group actions on Hilbert spaces: growth of cocycles. To appear in GAFA. Zbl1129.22004
  8. A. Erschler. (2003). On isoperimetric profiles of finitely generated groups. Geom. dedicata 100, 157-171. Zbl1049.20024MR2011120
  9. A. Grigor’yan. (1994). Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana 10, 395-452. Zbl0810.58040
  10. P. Hall. The Frattini subgroups of finitely generated groups. Proc. London Math. Soc. (3), 11: 327-352, 1961. Zbl0104.02201MR124406
  11. E. Kappos. p -cohomology for groups of type F P n . math.FA/0511002, 2006. 
  12. S. Mustapha. Distorsion des distances dans les groupes p -adiques. Bulletin des Sciences Mathématiques. 124, Issue 3 , 175-191, 2000. Zbl0948.22012MR1753262
  13. S. Mustapha. Sami Bornes inférieures pour les marches aléatoires sur les groupes p -adiques moyennables. Ann. Inst. H. Poincaré Probab. Statist. 42, no. 1, 81–88, 2006. Zbl1102.60041MR2196972
  14. P. Pansu. Cohomologie L p des variétés à courbure négative, cas du degré 1. Rend. Semin. Mat., Torino Fasc. Spec., 95-120, 1989. Zbl0723.53023MR1086210
  15. C. Pittet. (2000). The isoperimetric profile of homogeneous Riemannian manifolds. J. Diff. Geom. 54, 2, 255-302. Zbl1035.53069MR1818180
  16. C. Pittet, L. Saloff-Coste. (2003). Random walks on finite rank solvable groups. J. Eur. Math. Soc. 5, 313-342. Zbl1057.20026MR2017850
  17. R. Tessera. (2006). Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. math.GR/0603138. Zbl1274.43009
  18. R. Tessera. (2006). Vanishing of the first reduced cohomology with values in a L p -representation. math.GT/0611001. 
  19. R. Tessera. (2007). Large scale Sobolev inequalities on metric measure spaces and applications. Zbl1194.53036
  20. R. Tessera. (2007). Isoperimetric profile of subgroups and probability of return of random walks on elementary solvable groups. 
  21. N. Varopoulos. (1988). Analysis on Lie groups. J. Funct. Anal. 76, 346-410. Zbl0634.22008MR924464

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.