The Q-matrix problem

David Williams

Séminaire de probabilités de Strasbourg (1976)

  • Volume: 10, page 216-234

How to cite

top

Williams, David. "The Q-matrix problem." Séminaire de probabilités de Strasbourg 10 (1976): 216-234. <http://eudml.org/doc/113080>.

@article{Williams1976,
author = {Williams, David},
journal = {Séminaire de probabilités de Strasbourg},
language = {eng},
pages = {216-234},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The Q-matrix problem},
url = {http://eudml.org/doc/113080},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Williams, David
TI - The Q-matrix problem
JO - Séminaire de probabilités de Strasbourg
PY - 1976
PB - Springer - Lecture Notes in Mathematics
VL - 10
SP - 216
EP - 234
LA - eng
UR - http://eudml.org/doc/113080
ER -

References

top
  1. [1] A. Benveniste ans J. Jacod, Systèmes de Lévy des processus de Markov, Invent. Math.21 (1973), pp. 183-198. Zbl0265.60074MR343375
  2. [2] J.L. Doob, State-spaces for Markov chains, Trans. Amer. Math. Soc.149 (1970), pp. 279-305. Zbl0231.60048MR258131
  3. [3] D. Freedman, Approximating Markov chains, Holden-Day1972. Zbl0325.60059MR428472
  4. [4] R.K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes vol. 440, Springer1975. Zbl0299.60051MR405598
  5. [5] R.K. Getoor and M.J. Sharpe. The Ray space of a right process, to appear in Ann. Inst. Fourier Grenoble. Zbl0304.60005MR405604
  6. [6] C.T. Hou, The criterion for uniqueness of a Q process, Scientia Sinca vol. XVII No. 2 (1974), pp. 141-159. Zbl0349.60074MR518020
  7. [7] K. Ito, Poisson point processes attached to Markov processes, Proc. 6th Berkeley Symposium, vol. III, (1971), pp. 225-240. Zbl0284.60051MR402949
  8. [8] D.G. Kendall, A totally unstable denumerable Markov process, Quarterly J. Math., Oxford, vol. 9, No. 34 (1958), pp. 149-160. Zbl0081.13301MR97852
  9. [9] B. Maisonneuve, Systèmes régénératifs, Astérisque15, Société Mathématique de France (1974). Zbl0285.60049MR350879
  10. [10] J. Neveu, Lattice methods and subMarkovian processes, Proc. 4th Berkeley Symposium, vol. 2 (1960), pp. 347-391. Zbl0168.38801MR139200
  11. [11] J. Neveu, Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg25 (1961), pp, 36-61. Zbl0103.36303MR130714
  12. [12] J. Neveu, Sur les états d'entrée et les états fictifs d'un processus de Markov. Ann. Inst. Henri Poincaré17 (1962), pp. 323-337. Zbl0113.12601MR192559
  13. [13] J. Neveu, Entrance, exit and fictitious states for Markov chains, Proc. Aarhus Colloq. Combinatorial Probability (1962), pp. 64-68. Zbl0285.60052
  14. [14] G.E.H. Reuter, paper on HOU's uniqueness theorem (to appear in Z f W). Zbl0361.60041
  15. [15] G.E.H. Reuter and P.W. Riley, The Feller property for Markov semigroups on a countable state-space, J. London Math. Soc. (2), 5(1972), pp. 267-275. Zbl0246.60064MR343378
  16. [16] D. Williams, A note on the Q-matrices of Markov chains, Z. Wahrscheinlichkeitstheorie verw. Gebiete7 (1967), pp. 116-121. Zbl0178.20304MR226739
  17. [17] D. Williams, Fictitious states, coupled laws and local time, Z f W11 (1969), pp. 288-310. Zbl0181.21202MR245100
  18. [18] D. Williams, On operator semigroups and Markov groups, Z f W13 (1969), pp. 280-285. Zbl0198.22102MR254920
  19. [19] D. Williams, Brownian motions and diffusions as Markov processes, Bull. London Math. Soc.6 (1974), 257-303. Zbl0321.60058MR359028
  20. [20] D. Williams, The Q-matrix problem for Markov chains (to appear). Zbl0363.60062MR381003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.