The Q-matrix problem

David Williams

Séminaire de probabilités de Strasbourg (1976)

  • Volume: 10, page 216-234

How to cite

top

Williams, David. "The Q-matrix problem." Séminaire de probabilités de Strasbourg 10 (1976): 216-234. <http://eudml.org/doc/113080>.

@article{Williams1976,
author = {Williams, David},
journal = {Séminaire de probabilités de Strasbourg},
language = {eng},
pages = {216-234},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The Q-matrix problem},
url = {http://eudml.org/doc/113080},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Williams, David
TI - The Q-matrix problem
JO - Séminaire de probabilités de Strasbourg
PY - 1976
PB - Springer - Lecture Notes in Mathematics
VL - 10
SP - 216
EP - 234
LA - eng
UR - http://eudml.org/doc/113080
ER -

References

top
  1. [1] A. Benveniste ans J. Jacod, Systèmes de Lévy des processus de Markov, Invent. Math.21 (1973), pp. 183-198. Zbl0265.60074MR343375
  2. [2] J.L. Doob, State-spaces for Markov chains, Trans. Amer. Math. Soc.149 (1970), pp. 279-305. Zbl0231.60048MR258131
  3. [3] D. Freedman, Approximating Markov chains, Holden-Day1972. Zbl0325.60059MR428472
  4. [4] R.K. Getoor, Markov processes: Ray processes and right processes, Lecture Notes vol. 440, Springer1975. Zbl0299.60051MR405598
  5. [5] R.K. Getoor and M.J. Sharpe. The Ray space of a right process, to appear in Ann. Inst. Fourier Grenoble. Zbl0304.60005MR405604
  6. [6] C.T. Hou, The criterion for uniqueness of a Q process, Scientia Sinca vol. XVII No. 2 (1974), pp. 141-159. Zbl0349.60074MR518020
  7. [7] K. Ito, Poisson point processes attached to Markov processes, Proc. 6th Berkeley Symposium, vol. III, (1971), pp. 225-240. Zbl0284.60051MR402949
  8. [8] D.G. Kendall, A totally unstable denumerable Markov process, Quarterly J. Math., Oxford, vol. 9, No. 34 (1958), pp. 149-160. Zbl0081.13301MR97852
  9. [9] B. Maisonneuve, Systèmes régénératifs, Astérisque15, Société Mathématique de France (1974). Zbl0285.60049MR350879
  10. [10] J. Neveu, Lattice methods and subMarkovian processes, Proc. 4th Berkeley Symposium, vol. 2 (1960), pp. 347-391. Zbl0168.38801MR139200
  11. [11] J. Neveu, Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg25 (1961), pp, 36-61. Zbl0103.36303MR130714
  12. [12] J. Neveu, Sur les états d'entrée et les états fictifs d'un processus de Markov. Ann. Inst. Henri Poincaré17 (1962), pp. 323-337. Zbl0113.12601MR192559
  13. [13] J. Neveu, Entrance, exit and fictitious states for Markov chains, Proc. Aarhus Colloq. Combinatorial Probability (1962), pp. 64-68. Zbl0285.60052
  14. [14] G.E.H. Reuter, paper on HOU's uniqueness theorem (to appear in Z f W). Zbl0361.60041
  15. [15] G.E.H. Reuter and P.W. Riley, The Feller property for Markov semigroups on a countable state-space, J. London Math. Soc. (2), 5(1972), pp. 267-275. Zbl0246.60064MR343378
  16. [16] D. Williams, A note on the Q-matrices of Markov chains, Z. Wahrscheinlichkeitstheorie verw. Gebiete7 (1967), pp. 116-121. Zbl0178.20304MR226739
  17. [17] D. Williams, Fictitious states, coupled laws and local time, Z f W11 (1969), pp. 288-310. Zbl0181.21202MR245100
  18. [18] D. Williams, On operator semigroups and Markov groups, Z f W13 (1969), pp. 280-285. Zbl0198.22102MR254920
  19. [19] D. Williams, Brownian motions and diffusions as Markov processes, Bull. London Math. Soc.6 (1974), 257-303. Zbl0321.60058MR359028
  20. [20] D. Williams, The Q-matrix problem for Markov chains (to appear). Zbl0363.60062MR381003

NotesEmbed ?

top

You must be logged in to post comments.