The Q-matrix problem 2 : Kolmogorov backward equations

David Williams

Séminaire de probabilités de Strasbourg (1976)

  • Volume: 10, page 505-520

How to cite

top

Williams, David. "The Q-matrix problem 2 : Kolmogorov backward equations." Séminaire de probabilités de Strasbourg 10 (1976): 505-520. <http://eudml.org/doc/113093>.

@article{Williams1976,
author = {Williams, David},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Q-matrix problem; Kolmogorov backward equations},
language = {eng},
pages = {505-520},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The Q-matrix problem 2 : Kolmogorov backward equations},
url = {http://eudml.org/doc/113093},
volume = {10},
year = {1976},
}

TY - JOUR
AU - Williams, David
TI - The Q-matrix problem 2 : Kolmogorov backward equations
JO - Séminaire de probabilités de Strasbourg
PY - 1976
PB - Springer - Lecture Notes in Mathematics
VL - 10
SP - 505
EP - 520
LA - eng
KW - Q-matrix problem; Kolmogorov backward equations
UR - http://eudml.org/doc/113093
ER -

References

top
  1. [1] J. Azema, Une remarque sur les temps de retour, trois applications, Séminaire de Prob. Strasbourg VI, Lect. Notes vol. 258, 1972. Zbl0231.60066MR381010
  2. [2] K.L. Chung, Markov chains with stationary transition probabilities, Springer, Berlin, (2nd edition), 1967. Zbl0146.38401
  3. [3] C. Dellacherie, Ensembles épais: applications aux processus de Markov, C.R. Acad. Sci.Paris266, 1258-1261, 1968. Zbl0162.49003
  4. [4] D. Freedman, Approximating Markov chains, Holden-Day, San Francisco, 1971. 
  5. [5] R.K. Getoor, Markov processes: Ray processes and right processes, Lect. Notes vol. 440, 1975. Zbl0299.60051
  6. [6] K. Ito, Poisson point processes attached to Markov processes, Proc. 6th Berkeley Symposium, vol. III, 225-240, 1971. Zbl0284.60051
  7. [7] D.G. Kendall, A totally unstable denumerable Markov process, Quart. J. Math. Oxford9, 149-160, 1958. Zbl0081.13301MR97852
  8. [8] D.G. Kendall and G.E.H. Reuter, Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators on l, Proc. Intern. Congress Math.1954 (Amsterdam) 3, 377-415, 1956. Zbl0073.12901MR88831
  9. [9] J.F.C. Kingman, Regenerative phenomena, Wiley, London, New York, 1972. Zbl0236.60040MR350861
  10. [10] J.F.C. Kingman, A property of the derivatives of Markov transition properties, Quart. J. Math. Oxford (2) 26, 121-128, 1975. Zbl0324.60058MR370773
  11. [11] B. Maisonneuve, Systèmes régénératifs, Astérisque15, Société Mathématique de France, 1974. Zbl0285.60049MR350879
  12. [12] J. Neveu; Une généralisation des processus à accroissements positifs indépendants, Abh. Math. Sem. Univ. Hamburg25, 36-61, 1961. Zbl0103.36303MR130714
  13. [13] G.E.H. Reuter, Denumerable Markov processes and the associated contraction semi-groups on l, Acta. Math.97, 1-46, 1957. Zbl0079.34703MR102123
  14. [14] G.E.H. Reuter, Remarks on a Markov chain example of Kolmogorov, Z. Wahrscheinlichkeitstheorie13, 315-320, 1969. Zbl0176.47803MR258132
  15. [15] D.W. Stroock and S.R.S. Varadhan, Diffusion processes with continuous coefficients: I, II, Co m. Pure Appl. Math.XXII, 345-400, 479-530, 1969. Zbl0175.44802
  16. [16] D. Williams, The Q-matrix problem, Séminaire de Prob. Strasbourg X. Zbl0361.60035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.