# On q–Analogues of Caputo Derivative and Mittag–Leffler Function

Rajkovic, Predrag; Marinkovic, Sladjana; Stankovic, Miomir

Fractional Calculus and Applied Analysis (2007)

- Volume: 10, Issue: 4, page 359-373
- ISSN: 1311-0454

## Access Full Article

top## Abstract

top## How to cite

topRajkovic, Predrag, Marinkovic, Sladjana, and Stankovic, Miomir. "On q–Analogues of Caputo Derivative and Mittag–Leffler Function." Fractional Calculus and Applied Analysis 10.4 (2007): 359-373. <http://eudml.org/doc/11332>.

@article{Rajkovic2007,

abstract = {Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of
integration, we consider the fractional q–derivative of Caputo type.
Especially, its applications to q-exponential functions allow us to introduce
q–analogues of the Mittag–Leffler function. Vice versa, those functions can
be used for defining generalized operators in fractional q–calculus.},

author = {Rajkovic, Predrag, Marinkovic, Sladjana, Stankovic, Miomir},

journal = {Fractional Calculus and Applied Analysis},

keywords = {33D60; 33E12; 26A33},

language = {eng},

number = {4},

pages = {359-373},

publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},

title = {On q–Analogues of Caputo Derivative and Mittag–Leffler Function},

url = {http://eudml.org/doc/11332},

volume = {10},

year = {2007},

}

TY - JOUR

AU - Rajkovic, Predrag

AU - Marinkovic, Sladjana

AU - Stankovic, Miomir

TI - On q–Analogues of Caputo Derivative and Mittag–Leffler Function

JO - Fractional Calculus and Applied Analysis

PY - 2007

PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences

VL - 10

IS - 4

SP - 359

EP - 373

AB - Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of
integration, we consider the fractional q–derivative of Caputo type.
Especially, its applications to q-exponential functions allow us to introduce
q–analogues of the Mittag–Leffler function. Vice versa, those functions can
be used for defining generalized operators in fractional q–calculus.

LA - eng

KW - 33D60; 33E12; 26A33

UR - http://eudml.org/doc/11332

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.