On q–Analogues of Caputo Derivative and Mittag–Leffler Function
Rajkovic, Predrag; Marinkovic, Sladjana; Stankovic, Miomir
Fractional Calculus and Applied Analysis (2007)
- Volume: 10, Issue: 4, page 359-373
- ISSN: 1311-0454
Access Full Article
topAbstract
topHow to cite
topRajkovic, Predrag, Marinkovic, Sladjana, and Stankovic, Miomir. "On q–Analogues of Caputo Derivative and Mittag–Leffler Function." Fractional Calculus and Applied Analysis 10.4 (2007): 359-373. <http://eudml.org/doc/11332>.
@article{Rajkovic2007,
abstract = {Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of
integration, we consider the fractional q–derivative of Caputo type.
Especially, its applications to q-exponential functions allow us to introduce
q–analogues of the Mittag–Leffler function. Vice versa, those functions can
be used for defining generalized operators in fractional q–calculus.},
author = {Rajkovic, Predrag, Marinkovic, Sladjana, Stankovic, Miomir},
journal = {Fractional Calculus and Applied Analysis},
keywords = {33D60; 33E12; 26A33},
language = {eng},
number = {4},
pages = {359-373},
publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},
title = {On q–Analogues of Caputo Derivative and Mittag–Leffler Function},
url = {http://eudml.org/doc/11332},
volume = {10},
year = {2007},
}
TY - JOUR
AU - Rajkovic, Predrag
AU - Marinkovic, Sladjana
AU - Stankovic, Miomir
TI - On q–Analogues of Caputo Derivative and Mittag–Leffler Function
JO - Fractional Calculus and Applied Analysis
PY - 2007
PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences
VL - 10
IS - 4
SP - 359
EP - 373
AB - Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of
integration, we consider the fractional q–derivative of Caputo type.
Especially, its applications to q-exponential functions allow us to introduce
q–analogues of the Mittag–Leffler function. Vice versa, those functions can
be used for defining generalized operators in fractional q–calculus.
LA - eng
KW - 33D60; 33E12; 26A33
UR - http://eudml.org/doc/11332
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.