Page 1 Next

Displaying 1 – 20 of 23

Showing per page

A new characteristic property of Mittag-Leffler functions and fractional cosine functions

Zhan-Dong Mei, Ji-Gen Peng, Jun-Xiong Jia (2014)

Studia Mathematica

A new characteristic property of the Mittag-Leffler function E α ( a t α ) with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.

A Poster about the Recent History of Fractional Calculus

Machado, Tenreiro, Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major contributions during the period 1966-2010.

Algorithms for Evaluation of the Wright Function for the Real Arguments’ Values

Luchko, Yury (2008)

Fractional Calculus and Applied Analysis

2000 Math. Subject Classification: 33E12, 65D20, 33F05, 30E15The paper deals with analysis of several techniques and methods for the numerical evaluation of the Wright function. Even if the focus is mainly on the real arguments’ values, the methods introduced here can be used in the complex plane, too. The approaches presented in the paper include integral representations of the Wright function, its asymptotic expansions and summation of series. Because the Wright function depends on two parameters ...

An Analog of the Tricomi Problem for a Mixed Type Equation with a Partial Fractional Derivative

Kilbas, Anatoly, Repin, Oleg (2010)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.The paper deals with an analog of Tricomi boundary value problem for a partial differential equation of mixed type involving a diffusion equation with the Riemann-Liouville partial fractional derivative and a hyperbolic equation with two degenerate lines. By using the properties of the Gauss hypergeometric function and of the generalized fractional integrals and derivatives with such a function in the kernel, the uniqueness...

Caputo-Type Modification of the Erdélyi-Kober Fractional Derivative

Luchko, Yury, Trujillo, Juan (2007)

Fractional Calculus and Applied Analysis

2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05The Caputo fractional derivative is one of the most used definitions of a fractional derivative along with the Riemann-Liouville and the Grünwald- Letnikov ones. Whereas the Riemann-Liouville definition of a fractional derivative is usually employed in mathematical texts and not so frequently in applications, and the Grünwald-Letnikov definition – for numerical approximation of both Caputo and Riemann-Liouville fractional derivatives,...

Inequalities and Asymptotic Formulae for the Three Parametric Mittag-Leffler Functions

Paneva-Konovska, Jordanka (2012)

Mathematica Balkanica New Series

MSC 2010: 33E12, 30A10, 30D15, 30E15We consider some families of 3-index generalizations of the classical Mittag-Le²er functions and study the behaviour of these functions in domains of the complex plane. First, some inequalities in the complex plane and on its compact subsets are obtained. We also prove an asymptotic formula for the case of "large" values of the indices of these functions. Similar results have also been obtained by the author for the classical Bessel functions and their Wright's...

Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes

Patie Pierre (2009)

Annales de l'I.H.P. Probabilités et statistiques

We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any α, x&gt;0, γ≥0 and fa smooth function on + , 𝐋 ( γ ) f ( x ) = x - α ( σ 2 x 2 f ' ' ( x ) + ( σ γ + b ) x f ' ( x ) + 0 f e - r x - f ( x ) e - r γ + x f ' ( x ) r 𝕀 { r 1 } ν ( d r ) ) , ( 0 . 1 ) where the coefficients b ,σ≥0 and the measure ν, which satisfies the integrability condition ∫0∞(1∧r2)ν(dr)&lt;+∞, are uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent ψ. L(γ) is known to be the infinitesimal generator of a positive...

Integral Representations of Generalized Mathieu Series Via Mittag-Leffler Type Functions

Tomovski, Živorad (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30The main purpose of this paper is to present a number of potentially useful integral representations for the generalized Mathieu series as well as for its alternating versions via Mittag-Leffler type functions.

Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation

Nikolova, Yanka, Boyadjiev, Lyubomir (2010)

Fractional Calculus and Applied Analysis

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.

Matrix-Variate Statistical Distributions and Fractional Calculus

Mathai, A., Haubold, H. (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthdayA connection between fractional calculus and statistical distribution theory has been established by the authors recently. Some extensions of the results to matrix-variate functions were also considered. In the present article, more results on matrix-variate statistical densities and their connections to fractional calculus will be established. When considering solutions of fractional...

Numerical Results for the Generalized Mittag-Leffler Function

Seybold, H. J., Hilfer, R. (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33E12, 33FXX PACS (Physics Abstracts Classification Scheme): 02.30.Gp, 02.60.GfResults of extensive calculations for the generalized Mittag-Leffler function E0.8,0.9(z) are presented in the region −8 ≤ Re z ≤ 5 and −10 ≤ Im z ≤ 10 of the complex plane. This function is related to the eigenfunction of a fractional derivative of order α = 0.8 and type β = 0.5.

On asymptotics of discrete Mittag-Leffler function

Luděk Nechvátal (2014)

Mathematica Bohemica

The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional h -difference operators) and describe its...

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 33C60, 35R11In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.

On q–Analogues of Caputo Derivative and Mittag–Leffler Function

Rajkovic, Predrag, Marinkovic, Sladjana, Stankovic, Miomir (2007)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of integration, we consider the fractional q–derivative of Caputo type. Especially, its applications to q-exponential functions allow us to introduce q–analogues of the Mittag–Leffler function. Vice versa, those functions can be used for defining generalized operators in fractional q–calculus.

Renewal Processes of Mittag-Leffler and Wright Type

Mainardi, Francesco, Gorenflo, Rudolf, Vivoli, Alessandro (2005)

Fractional Calculus and Applied Analysis

2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.After sketching the basic principles of renewal theory we discuss the classical Poisson process and offer two other processes, namely the renewal process of Mittag-Leffler type and the renewal process of Wright type, so named by us because special functions of Mittag-Leffler and of Wright type appear in the definition of the relevant waiting times. We compare these three processes with each other, furthermore consider corresponding...

Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions

Boyadjiev, Lyubomir, Al-Saqabi, Bader (2012)

Mathematica Balkanica New Series

MSC 2010: 35R11, 42A38, 26A33, 33E12The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the Weyl space-fractional operator. The solutions obtained are in integral form whose kernels are Green functions expressed in terms of the Fox H-functions....

Theorem for Series in Three-Parameter Mittag-Leffler Function

Soubhia, Ana, Camargo, Rubens, Oliveira, Edmundo, Vaz, Jayme (2010)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification 2010: 26A33, 33E12.The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.

Currently displaying 1 – 20 of 23

Page 1 Next