Loading [MathJax]/extensions/MathZoom.js
A new characteristic property of the Mittag-Leffler function with 1 < α < 2 is deduced. Motivated by this property, a new notion, named α-order cosine function, is developed. It is proved that an α-order cosine function is associated with a solution operator of an α-order abstract Cauchy problem. Consequently, an α-order abstract Cauchy problem is well-posed if and only if its coefficient operator generates a unique α-order cosine function.
MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major
contributions during the period 1966-2010.
2000 Math. Subject Classification: 33E12, 65D20, 33F05, 30E15The paper deals with analysis of several techniques and methods for the
numerical evaluation of the Wright function. Even if the focus is mainly on
the real arguments’ values, the methods introduced here can be used in the
complex plane, too. The approaches presented in the paper include integral
representations of the Wright function, its asymptotic expansions and
summation of series. Because the Wright function depends on two parameters
...
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.The paper deals with an analog of Tricomi boundary value problem for a partial differential equation of mixed type involving a diffusion equation with the Riemann-Liouville partial fractional derivative and a hyperbolic equation with two degenerate lines. By using the properties of the Gauss hypergeometric function and of the generalized fractional integrals and derivatives with such a function in the kernel, the uniqueness...
2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05The Caputo fractional derivative is one of the most used definitions of a
fractional derivative along with the Riemann-Liouville and the Grünwald-
Letnikov ones. Whereas the Riemann-Liouville definition of a fractional
derivative is usually employed in mathematical texts and not so frequently
in applications, and the Grünwald-Letnikov definition – for numerical approximation of both Caputo and Riemann-Liouville fractional derivatives,...
MSC 2010: 33E12, 30A10, 30D15, 30E15We consider some families of 3-index generalizations of the classical Mittag-Le²er functions and study the behaviour of these functions in domains of the complex plane. First, some inequalities in the complex plane and on its compact subsets are obtained. We also prove an asymptotic formula for the case of "large" values of the indices of these functions. Similar results have also been obtained by the author for the classical Bessel functions and their Wright's...
We first characterize the increasing eigenfunctions associated to the following family of integro-differential operators, for any α, x>0, γ≥0 and fa smooth function on ,
where the coefficients ,σ≥0 and the measure ν, which satisfies the integrability condition ∫0∞(1∧r2)ν(dr)<+∞, are uniquely determined by the distribution of a spectrally negative, infinitely divisible random variable, with characteristic exponent ψ. L(γ) is known to be the infinitesimal generator of a positive...
Mathematics Subject Classification: 33C05, 33C10, 33C20, 33C60, 33E12,
33E20, 40A30The main purpose of this paper is to present a number of potentially
useful integral representations for the generalized Mathieu series as well as
for its alternating versions via Mittag-Leffler type functions.
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is
applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.
MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthdayA connection between fractional calculus and statistical distribution
theory has been established by the authors recently. Some extensions of
the results to matrix-variate functions were also considered. In the present
article, more results on matrix-variate statistical densities and their connections to fractional calculus will be established. When considering solutions of fractional...
Mathematics Subject Classification: 33E12, 33FXX
PACS (Physics Abstracts Classification Scheme): 02.30.Gp, 02.60.GfResults of extensive calculations for the generalized Mittag-Leffler function E0.8,0.9(z) are presented in the region −8 ≤ Re z ≤ 5 and −10 ≤ Im z ≤ 10 of the complex plane. This function is related to the eigenfunction of a fractional derivative of order α = 0.8 and type β = 0.5.
The (modified) two-parametric Mittag-Leffler function plays an essential role in solving the so-called fractional differential equations. Its asymptotics is known (at least for a subset of its domain and special choices of the parameters). The aim of the paper is to introduce a discrete analogue of this function as a solution of a certain two-term linear fractional difference equation (involving both the Riemann-Liouville as well as the Caputo fractional -difference operators) and describe its...
MSC 2010: 26A33, 33E12, 33C60, 35R11In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
Mathematics Subject Classification: 33D60, 33E12, 26A33Based on the fractional q–integral with the parametric lower limit of
integration, we consider the fractional q–derivative of Caputo type.
Especially, its applications to q-exponential functions allow us to introduce
q–analogues of the Mittag–Leffler function. Vice versa, those functions can
be used for defining generalized operators in fractional q–calculus.
2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.After sketching the basic principles of renewal theory we discuss the
classical Poisson process and offer two other processes, namely the renewal
process of Mittag-Leffler type and the renewal process of Wright type, so
named by us because special functions of Mittag-Leffler and of Wright type
appear in the definition of the relevant waiting times. We compare these
three processes with each other, furthermore consider corresponding...
MSC 2010: 35R11, 42A38, 26A33, 33E12The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the Weyl space-fractional operator. The solutions obtained are in integral form whose kernels are Green functions expressed in terms of the Fox H-functions....
Mathematics Subject Classification 2010: 26A33, 33E12.The new result presented here is a theorem involving series in the three-parameter Mittag-Leffler function. As a by-product, we recover some known results and discuss corollaries. As an application, we obtain the solution of a fractional differential equation associated with a RLC electrical circuit in a closed form, in terms of the two-parameter Mittag-Leffler function.
Currently displaying 1 –
20 of
23