Topologies métrisables rendant continues les trajectoires d'un processus
Séminaire de probabilités de Strasbourg (1982)
- Volume: 16, page 544-569
Access Full Article
topHow to cite
topChevet, Simone. "Topologies métrisables rendant continues les trajectoires d'un processus." Séminaire de probabilités de Strasbourg 16 (1982): 544-569. <http://eudml.org/doc/113407>.
@article{Chevet1982,
author = {Chevet, Simone},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {natural realization of a process; Belyaev dichotomy},
language = {fre},
pages = {544-569},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Topologies métrisables rendant continues les trajectoires d'un processus},
url = {http://eudml.org/doc/113407},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Chevet, Simone
TI - Topologies métrisables rendant continues les trajectoires d'un processus
JO - Séminaire de probabilités de Strasbourg
PY - 1982
PB - Springer - Lecture Notes in Mathematics
VL - 16
SP - 544
EP - 569
LA - fre
KW - natural realization of a process; Belyaev dichotomy
UR - http://eudml.org/doc/113407
ER -
References
top- [1] X. Fernique, Régularité des trajectoires des fonctions aléatoires gaussiennes, Lecture Notes in Math. 480, (1975), 1-91. Zbl0331.60025MR413238
- [2] X. Fernique, Régularité de fonctions aléatoires non gaussiennes, Ecole d'Eté de Saint-Flour1981, (à paraître). Zbl0507.60027
- [3] K. Ito, Canonical measurable random functions, Proc. Internat. Conf. on Functional Analysis and Related topics, (Tokyo, 1969), 369-377. Zbl0229.60028MR281250
- [4] K. Ito et M. Nisio, On the oscillation of Gaussian processes, Math. Scand.22, (1968), 209-223. Zbl0231.60027MR243597
- [5] V.A. Rohlin, On the fundamental ideas of measure theory, Translations Amer. Math. Soc. série 1, vol. 10 (Functional Analysis and Measure Theory), (1962), 1-54.
- [6] H. Sato et Y. Okazaki, Separabilities of a Gaussian Radon measure, Ann. Inst. H. Poincaré A 11, (1975), 287-298. Zbl0362.60015MR400323
- [7] H. Sato, Souslin support and Fourier expansions of a Gaussian Radon measure, Lecture Notes in Math. 860, (1980), 299-313. Zbl0454.60005MR647972
- [8] M. Talagrand, La τ-régularité des mesures gaussiennes, Z. Wahrs. verw. Geb.57, (1981), 213-221. Zbl0443.60007MR626816
- [9] B.S. Tsirelson, Some properties of Lacunary series and Gaussian measures that are connected with uniform versions of the Egorov and Lusin properties, Theory Prob. and Appl.20, (1975), 652-655. Zbl0345.60023
- [10] B.S. Tsirelson, Natural modification of random processes and its application to random functional series and to Gaussian measures, Zap. Nauchn. Sem. Leningrad Otdel Mat. Inst. Steklov (LOMI)55, (1975), 35-63 (en Russe). Zbl0408.60033
- [11] B.S. Tsirelson, Complement to a paper on natural modifications, Zap. Nauchn. Sem. Leningrad LOMI72, (1976), 201-211 (en Russe).
- [12] N.C. Jain et G. Kallianpur, Oscillation function of a multiparameter Gaussian process, Nagoya Math. J.47, (1972), 15-28. Zbl0249.60016MR317399
- [13] Yu.K. Belyaev, Local properties of the sample functions of stationary Gaussian processes, Theory Prob. and Appl.5, (1960), 117-120. Zbl0147.16001MR139207
- [14] Yu.K. Belyaev, Continuity and Hölder's conditions for sample functions of stationary Gaussian processes, Proc. 4th Berkeley Symposium, vol. 2, (1961), 23-33. Zbl0111.33003MR143256
- [15] J. Hoffmann-Jorgensen, Integrability of semi-norms, the 0-1 law and the affine kernel for product measures, Studia Math.61, (1977), 137-159. Zbl0373.60014MR464382
- [16] R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal.1, (1967), 290-330. Zbl0188.20502MR220340
- [17] A. Prekopa, On stochastic set functions, Acta Math. Acad. Scient. Hung.7, (1956) 215-262 et 8, (1957), 337-400. Zbl0075.29002MR97847
- [18] C. Borell, Gaussian Radon measures on locally convex spaces, Math. Scand.38, (1976), 265-284. Zbl0335.28009MR436303
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.