Levels at which every brownian excursion is exceptional

Martin T. Barlow; Edwin A. Perkins

Séminaire de probabilités de Strasbourg (1984)

  • Volume: 18, page 1-28

How to cite

top

Barlow, Martin T., and Perkins, Edwin A.. "Levels at which every brownian excursion is exceptional." Séminaire de probabilités de Strasbourg 18 (1984): 1-28. <http://eudml.org/doc/113482>.

@article{Barlow1984,
author = {Barlow, Martin T., Perkins, Edwin A.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {irregular behaviour of sample paths; upper and lower function; Hausdorff dimension; uniform modulus of continuity},
language = {eng},
pages = {1-28},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Levels at which every brownian excursion is exceptional},
url = {http://eudml.org/doc/113482},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Barlow, Martin T.
AU - Perkins, Edwin A.
TI - Levels at which every brownian excursion is exceptional
JO - Séminaire de probabilités de Strasbourg
PY - 1984
PB - Springer - Lecture Notes in Mathematics
VL - 18
SP - 1
EP - 28
LA - eng
KW - irregular behaviour of sample paths; upper and lower function; Hausdorff dimension; uniform modulus of continuity
UR - http://eudml.org/doc/113482
ER -

References

top
  1. 1. R.V. Chacon, Y. Le Jan, E. Perkins, S.J. Taylor. Generalized arc length for Brownian motion and Lévy processes. Z.f.W.57, 197-211 (1981). Zbl0469.60037MR626815
  2. 2. B. Davis. On Brownian slow points. Z.f.W.64, 359-367 (1983). Zbl0506.60078MR716492
  3. 3. B. Davis, E. Perkins. Brownian slow points: the critical cases (preprint). Zbl0576.60030MR799422
  4. 4. J. Dugundji. Topology. Boston, Allyn and Bacon, Inc., 1966. Zbl0144.21501MR193606
  5. 5. J. Hawkes. A lower Lipschitz condition for the stable subordinator. Z.f.W.17, 23-32 (1971). Zbl0193.45002MR282413
  6. 6. J. Hawkes. On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set. Z.f.W.19, 90-102 (1971). Zbl0203.49903MR292165
  7. 7. J. Hawkes. Hausdorff measure, entropy, and the independence of small sets. Proc. London Math. Soc. (3) 28, 700-724 (1974). Zbl0315.28001MR352412
  8. 8. J. Hawkes, W.E. Pruitt. Uniform Dimension Results for Processes with Independent Increments. Z.f.W.28, 277-288 (1974). Zbl0268.60063MR362508
  9. 9. K. Itô, H.P. McKean. Diffusion Processes and Their Sample Paths. Berlin-Heidelberg-New York, Springer, 1974. Zbl0285.60063MR345224
  10. 10. J.-P. Kahane. Slow points of Gaussian processes. Conference on Harmonic Analysis in Honor of Antoni Zygmund, I, 67-83, Wadsworth, 1981. MR730059
  11. 11. F.B. Knight. Essentials of Brownian Motion and Diffusion. Amer. Math. Soc. Surveys18, 1981. Zbl0458.60002MR613983
  12. 12. P. Lévy. Processus Stochastiques et Mouvement Brownien. Paris, Gauthier-Villars, 1948. Zbl0034.22603MR29120
  13. 13. E. Perkins. A global intrinsic characterization of Brownian local time. Ann. Probability9, 800-817 (1981). Zbl0469.60081MR628874
  14. 14. E. Perkins. The exact Hausdorff measure of the level sets of Brownian motion. Z.f.W.58, 373-388 (1981). Zbl0458.60076MR639146
  15. 15. E. Perkins. On the Hausdorff dimension of the Brownian slow points. Z.f.W.64, 369-399 (1983). Zbl0506.60079MR716493
  16. 16. S. Orey, S.J. Taylor. How often on a Brownian path does the law of the iterated logarithm fail?Proc. London Math. Soc. (3) 28, 174-192 (1974). Zbl0292.60128MR359031
  17. 17. P. Greenwood, E. Perkins. A conditioned limit theorem for random walk and Brownian local time on square root boundaries, Ann. Probability11, 227-261 (1983). Zbl0522.60030MR690126
  18. 18. R.K. Getoor. The Brownian escape process. Ann. Probability7, 864-867 (1974). Zbl0416.60086MR542136
  19. 19. D. Williams. Path decompositions and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc.28, 738-768 (1974). Zbl0326.60093MR350881
  20. 20. M. Emery, E. Perkins. On the filtration of B + L . Z.f.W.59, 383-390 (1982). Zbl0466.60073MR721634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.