Fast sets and points for fractional brownian motion

Davar Khoshnevisan; Zhan Shi

Séminaire de probabilités de Strasbourg (2000)

  • Volume: 34, page 393-416

How to cite

top

Khoshnevisan, Davar, and Shi, Zhan. "Fast sets and points for fractional brownian motion." Séminaire de probabilités de Strasbourg 34 (2000): 393-416. <http://eudml.org/doc/114050>.

@article{Khoshnevisan2000,
author = {Khoshnevisan, Davar, Shi, Zhan},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {fast point; fast set; Hausdorff dimension},
language = {eng},
pages = {393-416},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Fast sets and points for fractional brownian motion},
url = {http://eudml.org/doc/114050},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Khoshnevisan, Davar
AU - Shi, Zhan
TI - Fast sets and points for fractional brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 2000
PB - Springer - Lecture Notes in Mathematics
VL - 34
SP - 393
EP - 416
LA - eng
KW - fast point; fast set; Hausdorff dimension
UR - http://eudml.org/doc/114050
ER -

References

top
  1. [1] M.T. Barlow AND E. Perkins (1984). Levels at which every Brownian excursion is exceptional. Sém. Prob. XVIII, Lecture Notes in Math.1059, 1-28, Springer-Verlag, New York. Zbl0555.60050MR770945
  2. [2] M. Csörgö AND P. Révész (1981). Strong Approximations in Probability and Statistics, Academic Press, New York. Zbl0539.60029MR666546
  3. [3] P. Deheuvels AND M.A. Lifshits (1997). On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process. Studia Sci. Math. Hung., 33, 75-110. Zbl0908.60012MR1454103
  4. [4] P. Deheuvels AND D.M. Mason (1997). Random fractal functional laws of the iterated logarithm. (preprint) Zbl0916.60037MR1645150
  5. [5] R.M. Dudley (1984). A Course on Empirical Processes. École d'Été de St. Flour 1982. Lecture Notes in Mathematics1097. Springer, Berlin. Zbl0554.60029MR876079
  6. [6] J. Hawkes (1971). On the Hausdorff dimension of the range of a stable process with a Borel set. Z. Wahr. verw. Geb., 19, 90-102. Zbl0203.49903MR292165
  7. [7] J. Hawkes (1981). Trees generated by a simple branching process. J. London Math. Soc., 24, 373-384. Zbl0468.60081MR631950
  8. [8] J.-P. Kahane (1985). Some Random Series of Functions, second edition. Cambridge University Press, Cambridge. Zbl0571.60002MR833073
  9. [9] R. Kaufman (1974). Large increments of Brownian Motion. Nagoya Math. J., 56, 139-145. Zbl0372.60114MR370796
  10. [10] D. Khoshnevisan, Y. Peres AND Y. Xiao (1998). Limsup random fractals. In preparation. Zbl0949.60025
  11. [11] N. Kôno (1977). The exact Hausdorff measure of irregularity points for a Brownian path. Z. Wahr. verw. Geb., 40, 257-282. Zbl0376.60081MR458564
  12. [12] M. Ledoux AND M. Talagrand (1991). Probability in Banach Space, Isoperimetry and Processes, Springer-Verlag, Heidelberg-New York. Zbl0748.60004MR1102015
  13. [13] P. Lévy (1937). Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris. Zbl0016.17003MR586767JFM63.0490.04
  14. [14] R. Lyons (1980). Random walks and percolation on trees. Ann. Prob., 18, 931-958. Zbl0714.60089
  15. [15] M.B. Marcus (1968). Hölder conditions for Gaussian processes with stationary increments. Trans. Amer. Math. Soc., 134, 29-52. Zbl0186.50602MR230368
  16. [16] M.B. Marcus AND J. Rosen (1992). Moduli of continuity of local times of strongly symmetric Markov processes via Gaussian processes. J. Theoretical Prob., 5, 791-825. Zbl0761.60035MR1182681
  17. [17] P. Matilla (1995). Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge University Press, Cambridge. Zbl0819.28004
  18. [18] S. Orey AND S.J. Taylor (1974). How often on a Brownian path does the law of the iterated logarithm fail?Proc. London Math. Soc., 28, 174-192. Zbl0292.60128MR359031
  19. [19] Y. Peres (1996). Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré: Physique Théorique, 64, 339-347. Zbl0854.60077MR1400296
  20. [20] E. Perkins AND S.J. Taylor (1988), Measuring close approaches on a Brownian path, Ann. Prob., 16, 1458-1480. Zbl0659.60113MR958197
  21. [21] D. Revuz AND M. Yor (1994). Continuous Martingales and Brownian Motion, second edition. Springer, Berlin. Zbl0804.60001MR1303781
  22. [22] G.R. Shorack AND J.A. Wellner (1986). Empirical Processes with Applications to Statistics. Wiley, New York. Zbl1170.62365MR838963
  23. [23] S.J. Taylor (1966). Multiple points for the sample paths of the symmetric stable process, Z. Wahr. ver. Geb., 5, 247-64. Zbl0146.37905MR202193
  24. [24] S.J. Taylor (1986). The measure theory of random fractals. Math. Proc. Camb. Phil. Soc., 100, 383-406. Zbl0622.60021MR857718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.