The branching process in a brownian excursion

Jacques Neveu; James W. Pitman

Séminaire de probabilités de Strasbourg (1989)

  • Volume: 23, page 248-257

How to cite

top

Neveu, Jacques, and Pitman, James W.. "The branching process in a brownian excursion." Séminaire de probabilités de Strasbourg 23 (1989): 248-257. <http://eudml.org/doc/113678>.

@article{Neveu1989,
author = {Neveu, Jacques, Pitman, James W.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Brownian motion; branching process; Brownian excursion},
language = {eng},
pages = {248-257},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The branching process in a brownian excursion},
url = {http://eudml.org/doc/113678},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Neveu, Jacques
AU - Pitman, James W.
TI - The branching process in a brownian excursion
JO - Séminaire de probabilités de Strasbourg
PY - 1989
PB - Springer - Lecture Notes in Mathematics
VL - 23
SP - 248
EP - 257
LA - eng
KW - Brownian motion; branching process; Brownian excursion
UR - http://eudml.org/doc/113678
ER -

References

top
  1. [F] Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol I. Wiley, New York. Zbl0039.13201MR228020
  2. [GP] Greenwood, P. and Pitman, J.W. (1980): Fluctuation identities for Lévy processes and splitting at the maximum. Adv. Appl. Prob.12, 893-902. Zbl0443.60037MR588409
  3. [I] Itô, K. (1970). Poisson point processes attached to Markov processes. Proc. Sixth Berkeley Symp. Math. Statist. Prob.University of California Press, Berkeley, 225-239. Zbl0284.60051MR402949
  4. [LG] Le Gall, J.-F. (1989). Marches aléatoires, mouvement brownien et processus de branchement. Article in this volume. Zbl0741.60078
  5. [NP] Neveu, J. and Pitman, J.W. (1989). Renewal property of the extrema and tree property of the excursion of a one dimensional Brownian motion. Article in this volume. Zbl0741.60080
  6. [R1] Rogers, L.C.G. (1981): Williams' characterisation of the Brownian excursion law: proof and applications. Séminaire de Probabilités XV (Univ. Strasbourg), pp. 227-250. Lecture Notes Math.850, Springer-Verlag, Berlin. Zbl0462.60078MR622566
  7. [R2] Rogers, L.C.G. (1983). Itô excursion theory via resolvents. Z. Wahrscheinlichkeitstheorie verw. Gebeite63, 237-255. Zbl0528.60073MR701528
  8. [W] Walsh, J. (1978). Downcrossings and the Markov property of local time. Temps Locaux, Astérisque 52-53, 89-115. 
  9. [W1] Williams, D. (1974). Path decomposition and continuity of local time for one-dimensional diffusions. Proc. London Math. Soc., Ser. 3, 28, 738-768. Zbl0326.60093MR350881
  10. [W2] Williams, D. (1979). Diffusions, Markov Processes, and Martingales. Vol I. Wiley, New York. Zbl0402.60003MR531031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.