Une application de la topologie d'Émery : le processus information d'un modèle statistique filtré

Jean Jacod

Séminaire de probabilités de Strasbourg (1989)

  • Volume: 23, page 448-474

How to cite

top

Jacod, Jean. "Une application de la topologie d'Émery : le processus information d'un modèle statistique filtré." Séminaire de probabilités de Strasbourg 23 (1989): 448-474. <http://eudml.org/doc/113694>.

@article{Jacod1989,
author = {Jacod, Jean},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Emery topology; filtered statistical model; Hellinger integral; Hellinger process; Fisher information matrix; Fisher information process; locally derivable model; domination},
language = {fre},
pages = {448-474},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Une application de la topologie d'Émery : le processus information d'un modèle statistique filtré},
url = {http://eudml.org/doc/113694},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Jacod, Jean
TI - Une application de la topologie d'Émery : le processus information d'un modèle statistique filtré
JO - Séminaire de probabilités de Strasbourg
PY - 1989
PB - Springer - Lecture Notes in Mathematics
VL - 23
SP - 448
EP - 474
LA - fre
KW - Emery topology; filtered statistical model; Hellinger integral; Hellinger process; Fisher information matrix; Fisher information process; locally derivable model; domination
UR - http://eudml.org/doc/113694
ER -

References

top
  1. [1] Basawa I.V., Prakasa Rao B.L.S.: Statistical inference for stochastic processes. Academic Press, New York, 1980. Zbl0448.62070MR586053
  2. [2] Dacunha-Castelle D., Duflo M.: Probabilités et statistiques. Masson, Paris, 1982 (tome 1) et 1983 (tome 2). Zbl0535.62004
  3. [3] Emery M.: Une topologie sur l'espace des semimartingales. Sém. de Probabilités XIII. Lect. Notes in Math.721, 260-281. Springer Verlag: Berlin, 1979. Zbl0406.60057MR544800
  4. [4] Ibragimov I.A., HAS'MIHSKII R.Z.: Statistical Estimation. Springer Verlag: Berlin, 1981. Zbl0467.62026MR620321
  5. [5] Jacod J., Shiryaev A.N.: Limit theorems for stochastic processes. Springer Verlag: Berlin, 1987. Zbl0635.60021MR959133
  6. [6] Lecam L.: Asymptotic methods in statistical decision theory. Springer Verlag: Belin, 1986. Zbl0605.62002MR856411
  7. [7] Lepingle D.: Une inégalité de martingales. Sém. de Probabilités XII. Lect. Notes in Math.649, 134-137. Springer Verlag: Berlin, 1978. Zbl0375.60060MR520002
  8. [8] Memin J.: Espaces de semimartingales et changements de probabilités. Z. Wahrsch. Verw. Geb.52, 9-40, 1980. Zbl0407.60046MR568256
  9. [9] Strasser H.: Mathematical theory of statistics. De Gruyter: Berlin, 1985. Zbl0594.62017MR812467
  10. [10] Stricker C.: Quelques remarques sur la topologie des semimartingales, applications aux intégrales stochastiques. Sém, de Probabilités XV, Lect. Notes in Math.850, 499-522, Springer Verlag, Berlin: 1981. Zbl0456.60055MR622583
  11. [11] Feigin P.D.: Maximum likelihood estimation for continuous-time stochastic processes. Adv. Appl. Prob.8, 712-736, 1976. Zbl0355.62086MR426342
  12. [12] Heyde C.C.: Remarks on efficiency in estimation for branching processes. Boimetrika62, 49-55, 1975. Zbl0297.62069MR375695

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.