Hirsch's integral test for the iterated brownian motion
Séminaire de probabilités de Strasbourg (1996)
- Volume: 30, page 361-368
Access Full Article
topHow to cite
topBertoin, Jean, and Shi, Zhan. "Hirsch's integral test for the iterated brownian motion." Séminaire de probabilités de Strasbourg 30 (1996): 361-368. <http://eudml.org/doc/113939>.
@article{Bertoin1996,
author = {Bertoin, Jean, Shi, Zhan},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {iterated Brownian motion; Hirsch's integral test; lower functions; extended Borel-Cantelli lemma},
language = {eng},
pages = {361-368},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Hirsch's integral test for the iterated brownian motion},
url = {http://eudml.org/doc/113939},
volume = {30},
year = {1996},
}
TY - JOUR
AU - Bertoin, Jean
AU - Shi, Zhan
TI - Hirsch's integral test for the iterated brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 1996
PB - Springer - Lecture Notes in Mathematics
VL - 30
SP - 361
EP - 368
LA - eng
KW - iterated Brownian motion; Hirsch's integral test; lower functions; extended Borel-Cantelli lemma
UR - http://eudml.org/doc/113939
ER -
References
top- Bertoin, J. (1996), Iterated Brownian motion and stable(1/4) subordinator, Statist. Probab. Letters. (to appear). Zbl0854.60082MR1399993
- Burdzy, K. (1993), Some path properties of iterated Brownian motion, in: E. Çinlar, K.L. Chung and M. Sharpe, eds, Seminar on stochastic processes 1992 (Birkhäuser) pp. 67-87. Zbl0789.60060MR1278077
- Burdzy, K. and Khoshnevisan, D. (1995), The level sets of iterated Brownian motion, Séminaire de Probabilités XXIX pp. 231-236, Lecture Notes in Math.1613, Springer. Zbl0853.60061MR1459464
- Csáki, E. (1978), On the lower limits of maxima and minima of Wiener process and partial sums, Z. Wahrscheinlichkeitstheorie verw. Gebiete43, 205-221. Zbl0372.60113MR494527
- Csáki, E., Csörgö, M., Földes, A. and Révész, P. (1989), Brownian local time approximated by a Wiener sheet, Ann. Probab.17, 516-537. Zbl0674.60072MR985376
- Csáki, E., Csörgö, M., Földes, A. and Révész, P. (1995), Global Strassen-type theorems for iterated Brownian motions, Stochastic Process. Appl.59, 321-341. Zbl0843.60072MR1357659
- Csáki, E., Földes, A. and Révész, P. (1995), Strassen theorems for a class of iterated processes, preprint. Zbl0867.60051MR1373631
- Deheuvels, P. and Mason, D.M. (1992), A functional LIL approach to pointwise Bahadur-Kiefer theorems, in: R.M. Dudley, M.G. Hahn and J. Kuelbs, eds, Probability in Banach spaces8 (Birkhäuser) pp. 255-266. Zbl0844.60012MR1227623
- Feller, W.E. (1971), An introduction to probability theory and its applications, 2nd edn, vol. 2. Wiley, New York. Zbl0219.60003
- Funaki, T. (1979), A probabilistic construction of the solution of some higher order parabolic differential equations, Proc. Japan Acad.55, 176-179. Zbl0433.35039MR533542
- Hu, Y., Pierre Loti Viaud, D. and Shi, Z. (1995), Laws of the iterated logarithm for iterated Wiener processes, J. Theoretic. Prob.8, 303-319. Zbl0816.60027MR1325853
- Hu, Y. and Shi, Z. (1995), The Csörgö-Révész modulus of non-differentiability of iterated Brownian motion, Stochastic Process. Appl.58, 267-279. Zbl0833.60033MR1348378
- Khoshnevisan, D. and Lewis, T.M. (1996), The uniform modulus of iterated Brownian motion, J. Theoretic. Prob. (to appear). Zbl0880.60081MR1385400
- Khoshnevisan, D. and Lewis, T.M. (1996), Chung's law of the iterated logarithm for iterated Brownian motion, Ann. Inst. Henri Poincaré (to appear) Zbl0859.60025MR1387394
- Pitman, J.W.and Yor, M. (1993). Homogeneous functionals of Brownian motion (unpublished manuscript).
- Shi, Z. (1995), Lower limits of iterated Wiener processes, Statist. Probab. Letters. 23, 259-270. Zbl0824.60025MR1340161
- Spitzer, F. (1964). Principles of random walks. Van Nostrand, Princeton. Zbl0119.34304MR171290
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.