Chung's law of the iterated logarithm for iterated brownian motion

Davar Khoshnevisan; Thomas M. Lewis

Annales de l'I.H.P. Probabilités et statistiques (1996)

  • Volume: 32, Issue: 3, page 349-359
  • ISSN: 0246-0203

How to cite

top

Khoshnevisan, Davar, and Lewis, Thomas M.. "Chung's law of the iterated logarithm for iterated brownian motion." Annales de l'I.H.P. Probabilités et statistiques 32.3 (1996): 349-359. <http://eudml.org/doc/77538>.

@article{Khoshnevisan1996,
author = {Khoshnevisan, Davar, Lewis, Thomas M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {iterated Brownian motion; law of the iterated logarithm},
language = {eng},
number = {3},
pages = {349-359},
publisher = {Gauthier-Villars},
title = {Chung's law of the iterated logarithm for iterated brownian motion},
url = {http://eudml.org/doc/77538},
volume = {32},
year = {1996},
}

TY - JOUR
AU - Khoshnevisan, Davar
AU - Lewis, Thomas M.
TI - Chung's law of the iterated logarithm for iterated brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1996
PB - Gauthier-Villars
VL - 32
IS - 3
SP - 349
EP - 359
LA - eng
KW - iterated Brownian motion; law of the iterated logarithm
UR - http://eudml.org/doc/77538
ER -

References

top
  1. [B1] K. Burdzy, Some path properties of iterated Brownian motion, Sem. Stoch. Processes1992, K. L. Chung, E. Cinlar and M. J. Sharpe, eds., Birkhauser, 1993, pp. 67-87. Zbl0789.60060MR1278077
  2. [B2] K. Burdzy, Variation of iterated Brownian motion, Workshop and Conference on Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Systems, CRM Proceedings and Lecture Notes (to appear). Zbl0803.60077MR1278281
  3. [C] K.L. Chung, On the maximum partial sums of sequences of independent random variables, T.A.M.S., Vol. 64, pp. 205-233. Zbl0032.17102MR26274
  4. [CsCsFR] E. Csáki, M. Csörgö, A. Földes and P. Révész, Global Strassen type theorems for iterated Brownian motion, Preprint, 1994. MR1357659
  5. [DH] P. Deheuvels and D. Mason, A functional LIL approach to pointwise Bahadur-Kiefer theorems. In: Probability in Banach Spaces8, R. M. Dudley, M. G. Hahn and J. Kuelbs, eds., 1992, pp. 255-266, Birkhauser, Boston. Zbl0844.60012MR1227623
  6. [F] T. Funaki, Probabilistic construction of the solution of some higher order parabolic differential equations, Proc. Japan Acad., Vol. 55, 1979, pp. 176-179. Zbl0433.35039MR533542
  7. [HPS] Y. Hu, D. Pierre-Loti-Viaud and Z. Shi, Laws of the iterated logarithm for iterated Wiener processes, Preprint, 1994. Zbl0816.60027
  8. [KL] D. Khoshnevisan and T.M. Lewis, A uniform modulus result for iterated Brownian motion, Preprint, 1994. 
  9. [KS] I. Karatzas and S. Shreve, Brownian motion and Stochastic Calculus, Springer, New York, 1988. Zbl0638.60065MR917065
  10. [PS] S.C. Port and C.J. Stone, Brownian Motion and Classical Potential Theory, Academic Press, N.Y., 1978. Zbl0413.60067MR492329
  11. [S] Z. Shi, Lower limits of iterated Wiener processes, Preprint, 1994. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.