The level sets of iterated brownian motion
Krzysztof Burdzy; Davar Khoshnevisan
Séminaire de probabilités de Strasbourg (1995)
- Volume: 29, page 231-236
Access Full Article
topHow to cite
topBurdzy, Krzysztof, and Khoshnevisan, Davar. "The level sets of iterated brownian motion." Séminaire de probabilités de Strasbourg 29 (1995): 231-236. <http://eudml.org/doc/113906>.
@article{Burdzy1995,
author = {Burdzy, Krzysztof, Khoshnevisan, Davar},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {iterated Brownian motion; level set; Hausdorff dimension; Hölder continuous},
language = {eng},
pages = {231-236},
publisher = {Springer - Lecture Notes in Mathematics},
title = {The level sets of iterated brownian motion},
url = {http://eudml.org/doc/113906},
volume = {29},
year = {1995},
}
TY - JOUR
AU - Burdzy, Krzysztof
AU - Khoshnevisan, Davar
TI - The level sets of iterated brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 1995
PB - Springer - Lecture Notes in Mathematics
VL - 29
SP - 231
EP - 236
LA - eng
KW - iterated Brownian motion; level set; Hausdorff dimension; Hölder continuous
UR - http://eudml.org/doc/113906
ER -
References
top- [A] R.J. Adler (1978). The uniform dimension of the level sets of a Brownian sheet, Ann. Prob.6509-515. Zbl0378.60028MR490818
- [B] J. Bertoin (1995). Iterated Brownian motion and Stable (1/4) subordinator, to appear in Prob. and Stat. Lett. Zbl0854.60082MR1399993
- [B1] K. Burdzy (1993). Some path properties of iterated Brownian motion. Sem. Stoch. Proc.1992, 67-87 (Ed. K.L. Chung, E. Çinlar and M.J. Sharpe) Birkhäuser, Boston. Zbl0789.60060MR1278077
- [B2] K. Burdzy (1994). Variation of iterated Brownian motion. Measure-valued Processes, Stochastic Partial Differential Equations and Interacting Systems, (Ed. D.A. Dawson) CRM Proceedings and Lecture Notes, 535-53. Zbl0803.60077MR1278281
- [CsCsFR1] E. Csáki, M. Csörgö, A. Földes AND P. Révész (1995). Global Strassen type theorems for iterated Brownian motion, to appear in Stoch. Proc. Theor Appl. Zbl0843.60072MR1357659
- [CSCSFR2] E. Csáki, M. Csörgö, A. Földes AND P. Révész (1995). The local time of iterated Brownian motion, Preprint. MR1400596
- [DM] P. Deheuvels AND D.M. Mason (1992). A functional LIL approach to pointwise Bahadur-Kiefer theorems, Prob. in Banach Spaces, 8, 255-266 (eds.: R.M. Dudley, M.G. Hahn and J. Kuelbs) Zbl0844.60012MR1227623
- [F] T. Funaki (1979). A probabilistic construction of the solution of some higher order parabolic differential equations, Proc. Japan Acad.55, 176-179. Zbl0433.35039MR533542
- [HPS] Y. Hu, D. Pierre Lotti ViaudAND Z. Shi (1994). Laws of the iterated logarithm for iterated Wiener processes, to appear in J. Theor. Prob. Zbl0816.60027MR1325853
- [HS] Y. HuAND Z. Shi (1994). The Csörgö-Révész modulus of non-differentiability of iterated Brownian motion, to appear in Stoch. Proc. Theor Appl.. Zbl0833.60033MR1348378
- [IM] K. ItôAND H.P. Mckean (1965). Diffusion Processes and Their Sample Paths, Springer, Berlin, Heidelberg. Zbl0127.09503
- [KL1] D. Khoshnevisan AND T.M. Lewis (1995). Chung's law of the iterated logarithm for iterated Brownian motion, to appear in Ann.Inst. Hen. Poinc.: Prob. et Stat. Zbl0859.60025MR1387394
- [KL2] D. Khoshnevisan AND T.M. Lewis (1995). The modulus of continuity for iterated Brownian motion, to appear in J. Theoretical Prob. Zbl0880.60081MR1712242
- [Mc] H.P. McKean (1962). A Hölder condition for Brownian local time, J. Math. Kyoto Univ., 1-2, 195-201. Zbl0121.13101MR146902
- [P] E.A. Perkins (1981). The exact Hausdorff measure of the level sets of Brownian motion, Z. Wahr. verw. Geb.58, 373-388. Zbl0458.60076MR639146
- [RY] D. Revuz AND M. Yor (1991). Continuous Martingales and Brownian Motion, Springer, New York. Zbl0731.60002MR1083357
- [S] Z. Shi (1994). Lower limits of iterated Wiener processes, to appear in Stat. Prob. Lett. Zbl0824.60025MR1340161
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.