A remark on Tsirelson's stochastic differential equation
Michel Émery; Walter Schachermayer
Séminaire de probabilités de Strasbourg (1999)
- Volume: 33, page 291-303
Access Full Article
topHow to cite
topÉmery, Michel, and Schachermayer, Walter. "A remark on Tsirelson's stochastic differential equation." Séminaire de probabilités de Strasbourg 33 (1999): 291-303. <http://eudml.org/doc/114014>.
@article{Émery1999,
author = {Émery, Michel, Schachermayer, Walter},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {innovation problem; weak solution; non Markovian process; filtration; coupling},
language = {eng},
pages = {291-303},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A remark on Tsirelson's stochastic differential equation},
url = {http://eudml.org/doc/114014},
volume = {33},
year = {1999},
}
TY - JOUR
AU - Émery, Michel
AU - Schachermayer, Walter
TI - A remark on Tsirelson's stochastic differential equation
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 291
EP - 303
LA - eng
KW - innovation problem; weak solution; non Markovian process; filtration; coupling
UR - http://eudml.org/doc/114014
ER -
References
top- [1] M. Arnaudon. Appendice à l'exposé précédent : La filtration naturelle du mouvement brownien indexé par R dans une variété compacte. In this volume. Zbl0949.60089
- [2] M.T. Barlow, M. Émery F.B. Knight, S. Song & M. Yor. Autour d'un théorème de Tsirelson sur des filtrations browniennes et non browniennes. Séminaire de Probabilités XXXII, Lecture Notes in Mathematics1686, Springer1998. Zbl0914.60064
- [3] S. Beghdadi-Sakrani & M. Émery. On certain probabilities equivalent to coin-tossing, d'après Schachermayer. In this volume. Zbl0947.60080
- [4] V.E. Beneš. Non existence of strong non-anticipating solutions to SDE's; implication for functional DE's, filtering and control. Stoch. Proc. Appl.17, 243-263, 1977. Zbl0367.60059
- [5] B. De Meyer. Une simplification de l'argument de Tsirelson sur le caractère non-brownien des processus de Walsh. In this volume. Zbl0947.60052
- [6] P. Diaconis. From shuffling cards to walking around the building: An introduction to modern Markov chain theory. Documenta Mathematica. Extra volume ICM 1998. I47-64, 1998. Zbl0902.60052MR1648031
- [7] L. Dubins, J. Feldman, M. Smorodinsky & B. Tsirelson. Decreasing sequences of σ-fields and a measure change for Brownian motion. Ann. Prob.24, 882-904, 1996. Zbl0870.60078
- [8] M. Émery & W. Schachermayer . Brownian filtrations are not stable under equivalent time-changes. In this volume. Zbl0949.60087
- [9] J. Feldman. ∈-close measures producing non-isomorphic filtrations. Ann. Prob.24, 912-915, 1996. Zbl0879.60077MR1404535
- [10] J. Feldman & M. Smorodinsky. Simple examples of non-generating Girsanov processes. Séminaire de Probabilités XXXI, Lecture Notes in Mathematics1655, Springer1997. Zbl0883.60038
- [11] J. Feldman & B. Tsirelson. Decreasing sequences of σ-fields and a measure change for Brownian motion. II Ann. Prob.24, 905-911, 1996. Zbl0870.60079
- [12] J. Kallsen. A stochastic differential equation with a unique (up to indistinguishability) but not strong solution. In this volume. Zbl0954.60046
- [13] J.-F. Le Gall and M. Yor. Sur l'équation stochastique de Tsirelson. Séminaire de Probabilités XVII, Lecture Notes in Mathematics986, Springer1983. Zbl0535.60052MR770399
- [14] R.S. Liptser & A.N. Shiryaev. Statistics of Random Processes I. Springer, 1977. Zbl0364.60004
- [15] D. Revuz & M. Yor. Continuous Martingales and Brownian Motion. Springer, 1991. Zbl0731.60002
- [16] L.C.G. Rogers and D. Williams. Diffusions, Markov Processes, and Martingales. Volume 2: Itô Calculus. Wiley, 1987. Zbl0627.60001MR921238
- [17] W. Schachermayer. On certain probabilities equivalent to Wiener measure, d'après Dubins, Feldman, Smorodinsky and Tsirelson. In this volume. Zbl0947.60079
- [18] M. Smorodinsky. Processes with no standard extension. Israel J. Math., to appear. Zbl0921.60074MR1658583
- [19] D.W. Stroock & M. Yor. On extremal solutions of martingale problems. Ann. Sci. École Norm. Sup.13, 95-164, 1980. Zbl0447.60034
- [20] B. Tsirelson. Triple points: From non-Brownian filtrations to harmonic measures. GAFA, Geom. funct. anal.7, 1096-1142, 1997. Zbl0902.31004MR1487755
- [21] B.S. Tsirel'son. An example of a stochastic differential equation having no strong solution. Theor. Prob. Appl.20, 427-430, 1975. Zbl0353.60061MR375461
- [22] A.M. Vershik. Approximation in measure theory. Doctor Thesis, Leningrad 1973. Expanded and updated english version: The theory of decreasing sequences of measurable partitions. St. Petersburg Math. J.6, 705-761, 1995. Zbl0853.28009
- [23] J. Warren. On the joining of sticky Brownian motion. In this volume. Zbl0945.60086
- [24] H. von Weizsäcker. Exchanging the order of taking suprema and countable intersections of σ-algebras. Ann. Inst. Henri Poincaré19, 91-100, 1983. Zbl0509.60002MR699981
- [25] D. Williams. Probability with Martingales. Cambridge University Press. 1991. Zbl0722.60001MR1155402
- [26] M. Yor. De nouveaux résultats sur l'équation de Tsirel'son. C. R. Acad. Sci., Paris. Sér. I309, 511-514, 1989. Zbl0697.60062MR1055470
- [27] M. Yor. Tsirel'son's equation in discrete time. Probab. Theory Relat. Fields, 91135-152. 1992. Zbl0744.60033MR1147613
Citations in EuDML Documents
top- Vilmos Prokaj, Miklós Rásonyi, Walter Schachermayer, Hiding a constant drift
- Christophe Leuridan, Filtration d'une marche aléatoire stationnaire sur le cercle
- Shiqi Song, Optional splitting formula in a progressively enlarged filtration
- Michel Émery, Espaces probabilisés filtrés : de la théorie de Vershik au mouvement brownien, via des idées de Tsirelson
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.