# Optional splitting formula in a progressively enlarged filtration

ESAIM: Probability and Statistics (2014)

- Volume: 18, page 829-853
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topSong, Shiqi. "Optional splitting formula in a progressively enlarged filtration." ESAIM: Probability and Statistics 18 (2014): 829-853. <http://eudml.org/doc/274352>.

@article{Song2014,

abstract = {Let $\mathbb \{F\}^\{\}_\{\}$F be a filtration andτbe a random time. Let $\mathbb \{G\}^\{\}_\{\}$G be the progressive enlargement of $\mathbb \{F\}^\{\}_\{\}$F withτ. We study the following formula, called the optional splitting formula: For any $\mathbb \{G\}^\{\}_\{\}$G-optional processY, there exists an $\mathbb \{F\}^\{\}_\{\}$F-optional processY′ and a function Y′′ defined on [0,∞] × (ℝ+ × Ω) being $\mathcal \{B\}[0,\infty ]\otimes \mathcal \{O\}(\mathbb \{F\}^\{\}_\{\})$ℬ[0,∞]⊗x1d4aa;(F) measurable, such that $Y=Y^\{\prime \}\{1\}^\{\}_\{[0,\tau )\}+Y^\{\prime \prime \}(\tau )\mathbb \{1\}^\{\}_\{[\tau ,\infty )\}.$Y=Y′1[0,τ)+Y′′(τ)1[τ,∞). (This formula can also be formulated for multiple random timesτ1,...,τk). We are interested in this formula because of its fundamental role in many recent papers on credit risk modeling, and also because of the fact that its validity is limited in scope and this limitation is not sufficiently underlined. In this paper we will determine the circumstances in which the optional splitting formula is valid. We will then develop practical sufficient conditions for that validity. Incidentally, our results reveal a close relationship between the optional splitting formula and several measurability questions encountered in credit risk modeling. That relationship allows us to provide simple answers to these questions.},

author = {Song, Shiqi},

journal = {ESAIM: Probability and Statistics},

keywords = {optional process; progressive enlargement of filtration; credit risk modeling; conditional density hypothesis},

language = {eng},

pages = {829-853},

publisher = {EDP-Sciences},

title = {Optional splitting formula in a progressively enlarged filtration},

url = {http://eudml.org/doc/274352},

volume = {18},

year = {2014},

}

TY - JOUR

AU - Song, Shiqi

TI - Optional splitting formula in a progressively enlarged filtration

JO - ESAIM: Probability and Statistics

PY - 2014

PB - EDP-Sciences

VL - 18

SP - 829

EP - 853

AB - Let $\mathbb {F}^{}_{}$F be a filtration andτbe a random time. Let $\mathbb {G}^{}_{}$G be the progressive enlargement of $\mathbb {F}^{}_{}$F withτ. We study the following formula, called the optional splitting formula: For any $\mathbb {G}^{}_{}$G-optional processY, there exists an $\mathbb {F}^{}_{}$F-optional processY′ and a function Y′′ defined on [0,∞] × (ℝ+ × Ω) being $\mathcal {B}[0,\infty ]\otimes \mathcal {O}(\mathbb {F}^{}_{})$ℬ[0,∞]⊗x1d4aa;(F) measurable, such that $Y=Y^{\prime }{1}^{}_{[0,\tau )}+Y^{\prime \prime }(\tau )\mathbb {1}^{}_{[\tau ,\infty )}.$Y=Y′1[0,τ)+Y′′(τ)1[τ,∞). (This formula can also be formulated for multiple random timesτ1,...,τk). We are interested in this formula because of its fundamental role in many recent papers on credit risk modeling, and also because of the fact that its validity is limited in scope and this limitation is not sufficiently underlined. In this paper we will determine the circumstances in which the optional splitting formula is valid. We will then develop practical sufficient conditions for that validity. Incidentally, our results reveal a close relationship between the optional splitting formula and several measurability questions encountered in credit risk modeling. That relationship allows us to provide simple answers to these questions.

LA - eng

KW - optional process; progressive enlargement of filtration; credit risk modeling; conditional density hypothesis

UR - http://eudml.org/doc/274352

ER -

## References

top- [1] M. Barlow, Study of a filtration expanded to include an honest time. Probab. Theory Relat. Fields44 (1978) 307–323. Zbl0369.60047MR509204
- [2] M. Barlow, M. Emery, F. Knight, S. Song and M. Yor, Autour d’un théorème de Tsirelson sur des filtrations browniennes et non browniennes. Séminaire de Probabilité, XXXII. Springer-Verlag Berlin (1998). Zbl0914.60064MR1655299
- [3] M. Barlow and J. Pitman and M. Yor, On Walsh’s Brownian motion. Séminaire de Probabilité, XXIII. Springer-Verlag Berlin (1989) Zbl0747.60072
- [4] A. Bélanger and S. Shreve and D. Wong, A unified model for credit derivatives. Working paper (2002).
- [5] F. Biagini and A. Cretarola, Local risk-minimization for defaultable claims with recovery process. Appl. Math. Optim.65 (2012) 293–314. Zbl1244.93152MR2902694
- [6] T. Bielecki and M. Jeanblanc and M. Rutkowski, Credit Risk Modelling. Osaka University Press (2009). Zbl1107.91351
- [7] P. Billingsley, Convergence of probability measures. John Wiley & Sons (1968). Zbl0944.60003MR233396
- [8] P. Brémaud and M. Yor, Changes of filtrations and of probability measures. Prob. Theory Relat. Fields4 (1978) 269–295. Zbl0415.60048MR511775
- [9] G. Callegaro and M. Jeanblanc and B. Zargari, Carthaginian enlargement of filtrations. ESAIM: PS 17 (2013) 550–566. Zbl1296.60106MR3085632
- [10] L. Chaumont and M. Yor, Exercises in probability: a guide tour from measure theory to random processes, via conditioning. Cambridge University Press (2009). Zbl1180.60002MR2016344
- [11] C. Dellacherie and M. Emery, Filtrations indexed by ordinals; application to a conjecture of S. Laurent. Working paper (2012). Zbl1311.60009MR3185912
- [12] C. Dellacherie and P. Meyer, Probabilités et potentiel Chapitres I à IV. Hermann Paris (1975). Zbl0138.10402
- [13] C. Dellacherie and P. Meyer, Probabilités et potentiel Chapitres XVII à XXIV. Hermann Paris (1992). Zbl0138.10402
- [14] N. El. Karoui and M. Jeanblanc and Y. Jiao, What happens after a default: the conditional density approach. Stoch. Process. Appl. 120 (2010) 1011–1032. Zbl1194.91187MR2639736
- [15] M. Emery and W. Schachermayer, A remark on Tsirelson’s stochastic differential equation. Séminaire de Probabilités XXXIII, Springer-Verlag Berlin (1999) 291–303. Zbl0957.60064MR1768002
- [16] M. Emery and W. Schachermayer, On Vershik’s standardness criterion and Tsirelson’s notion of cosiness. Séminaire de Probabilités XXXV. Springer (2001) 265–305. Zbl1001.60039MR1837293
- [17] C. Fontana and M. Jeanblanc and S. Song, On arbitrages arising with honest times. Finance Stoch. 18 (2014) 515–543. Zbl06348472MR3232015
- [18] R. HandelOn the exchange of intersection and supremum of σ-fields in filtering theory. Israel J. Math. 192 (2012) 763. Zbl1271.60054MR3009741
- [19] S.W. He and J.G. Wang and J.A. Yan, Semimartingale Theory And Stochastic Calculus. Science Press CRC Press Inc (1992). Zbl0781.60002MR1219534
- [20] M. Jeanblanc and M. Rutkowski, Modeling default risk: an overview Math. Finance: Theory and Practice. Fudan University High Education Press (1999).
- [21] M. Jeanblanc and S. Song, An explicit model of default time with given survival probability. Stoch. Process. Appl.121 (2010) 1678–1704. Zbl1298.91176MR2811019
- [22] M. Jeanblanc and S. Song, Random times with given survival probability and their F-martingale decomposition formula. Stoch. Process. Appl.121 (2010) 1389–1410. Zbl1230.60047MR2794982
- [23] M. Jeanblanc and S. Song, Martingale representation theorem in progressively enlarged filtrations (2012). Preprint arXiv:1203.1447. Zbl1328.60110
- [24] M. Jeanblanc and Y. LeCam, Reduced form modelling for credit risk (2008). Available on: defaultrisk.com
- [25] T. JeulinSemi-martingales et grossissement d’une filtration, vol. 833 of Lect. Notes Math. Springer (1980). Zbl0444.60002MR604176
- [26] T. Jeulin and M. Yor, Grossissement d’une filtration and semi-martingales: formules explicites. Séminaire de Probabilités XII (1978) 78–97. Zbl0411.60045MR519998
- [27] Y. Jiao, Multiple defaults and contagion risks with global and default-free information. Working paper (2010).
- [28] I. Kharroubi and T. Lim, Progressive enlargement of filtrations and backward SDEs with jumps. Working paper (2011). Zbl1319.60126
- [29] S. Kusuoka, A remark on default risk models. Adv. Math. Econ.1 (1999) 69–82. Zbl0939.60023MR1722700
- [30] A. Nikeghbali and E. Platen, On honest times in financial modeling (2008). Preprint arXiv:0808.2892.
- [31] H. Pham, Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management. Stoch. Process. Appl.120 (2010) 1795–1820. Zbl1196.60141MR2673975
- [32] Ph. Protter, Stochastic integration and differential equations, 2nd edition. Springer (2004). Zbl0694.60047MR2020294
- [33] L. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales, vol. 1, Foundations. John Wiley and Sons (1994). Zbl0402.60003MR1331599
- [34] S. Song, Grossissement d’une filtration et problèmes connexes. Thesis Université Paris IV (1987).
- [35] S. Song, Drift operator in a market affected by the expansion of information flow: a case study (2012). Preprint arXiv:1207.1662v1.
- [36] S. Song, Local solution method for the problem of enlargement of filtration (2013). Preprint arXiv:1302.2862.
- [37] C. Stricker and M. Yor, Calcul stochastique dépendant d’un paramètre. Probab. Theory Relat. Fields45 (1978) 109–133. Zbl0388.60056MR510530
- [38] H. von Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ-algebras. Ann. Inst. Henri Poincaré Section B, Tome 19 1 (1983) 91–100. Zbl0509.60002MR699981
- [39] D. Wu, Dynamized copulas and applications to counterparty credit risk. Ph.D. Thesis, University of Evry (2012).
- [40] K. Yano and M. Yor, Around Tsirelson’s equation, or: The evolution process may not explain everything (2010). Preprint arXiv:0906.3442. Zbl1328.60170