Principal values of the integral functionals of brownian motion : existence continuity and an extension of Itô's formula

Aleksander S. Cherny

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 348-370

How to cite

top

Cherny, Aleksander S.. "Principal values of the integral functionals of brownian motion : existence continuity and an extension of Itô's formula." Séminaire de probabilités de Strasbourg 35 (2001): 348-370. <http://eudml.org/doc/114072>.

@article{Cherny2001,
author = {Cherny, Aleksander S.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {extensions of Itô’s formula; continuous additive functionals of a Brownian motion; processes of zero energy; Brownian local times; Bessel processes; Bessel bridges},
language = {eng},
pages = {348-370},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Principal values of the integral functionals of brownian motion : existence continuity and an extension of Itô's formula},
url = {http://eudml.org/doc/114072},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Cherny, Aleksander S.
TI - Principal values of the integral functionals of brownian motion : existence continuity and an extension of Itô's formula
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 348
EP - 370
LA - eng
KW - extensions of Itô’s formula; continuous additive functionals of a Brownian motion; processes of zero energy; Brownian local times; Bessel processes; Bessel bridges
UR - http://eudml.org/doc/114072
ER -

References

top
  1. [1] Ph. Biane, M. Yor. Valeurs principales associées aux temps locaux browniens.// Bull. Sci. Math.111 (1987), p. 23-101. Zbl0619.60072MR886959
  2. [2] N. Bouleau, M. Yor. Sur la variation quadratique des temps locaux de certaines semi-martingales.// C. R. Acad. Sci.Paris, Série I, 292 (1981), p. 491-494. Zbl0476.60046MR612544
  3. [3] H.J. Engelbert, W. Schmidt. On the behaviour of certain functionals of the Wiener process and applications to stochastic differential equations.// Lecture Notes in Control and Information Sciences, 36 (1981), p. 47-55. Zbl0468.60077MR653645
  4. [4] P.J. Fitzsimmons, J.W. Pitman, M. Yor. Markovian Bridges: construction, Palm interpretation and splicing.// Seminar on Stochastic Processes, 1992. Birkhäuser, 1993, p. 101-134. Zbl0844.60054MR1278079
  5. [5] H. Föllmer, Ph. Protter, A.N. Shiryaev. Quadratic covariation and an extension of Itô's formula.// Bernoulli, 1 (1995), No. 1/2, p. 149-170. Zbl0851.60048MR1354459
  6. [6] M. Fukushima, Y. Oshima, M. Takeda. Dirichlet forms and symmetric Markov processes. Walter de Gruyter, 1994. Zbl0838.31001MR1303354
  7. [7] Y. Hu. The laws of Chung and Hirsch for Cauchy's principal values related to Brownian local times.// Electronic Journal of Probability, 5 (2000), No. 10, p. 1-16. Zbl0951.60079MR1768844
  8. [8] Y. Hu, Z. Shi. An iterated logarithm law for Cauchy's principal value of Brownian local times.// Exponential functionals and principal values related to Brownian motion. Part B. Biblioteca de la Revista Matemática Iberoamericana, 1997. Zbl0911.60056MR1648661
  9. [9] K. Itô, H.P. McKean. Diffusion processes and their sample paths. Springer, 1965. Zbl0127.09503
  10. [10] J. Jacod, A.N. Shiryaev. Limit theorems for stochastic processes. Springer, 1987. Zbl0635.60021MR959133
  11. [11] T. Jeulin. Application de la théorie du grossissement à l'étude des temps locaux browniens.// Lecture Notes in Mathematics, 1118 (1985), p. 197-304. Zbl0562.60080
  12. [12] T. Jeulin, M. Yor. Inégalité de Hardy, semimartingales et faux-amis.// Lecture Notes in Mathematics, 721 (1979), p. 332-359. Zbl0419.60049MR544805
  13. [13] T. Jeulin, M. Yor. Filtration des ponts browniens et équations différentielles stochastiques linéaires./ / Lecture Notes in Mathematics, 1426 (1989), p. 227-265. Zbl0699.60075MR1071543
  14. [14] O. Kallenberg. Foundations of modern probability. Springer, 1997. Zbl0892.60001MR1464694
  15. [15] R.S. Liptser, A.N. Shiryaev. Statistics of random processes, I and II. Springer, 1977 and 1978. Zbl0364.60004
  16. [16] Y. Oshima, T. Yamada. On some representations of continuous additive functionals of locally zero energy.// J. Math. Soc. Japan, 36 (1984), No. 2, p. 315-339. Zbl0542.60078MR740320
  17. [17] J.W. Pitman, M. Yor. A decomposition of Bessel Bridges.// Z.W.59 (1982), p. 425-457. Zbl0484.60062MR656509
  18. [18] D. Revuz, M. Yor. Continuous martingales and Brownian motion. Springer, 1994. Zbl0804.60001MR1303781
  19. [19] A.N. Shiryaev. Optimal stopping rules. Springer, 1978. Zbl0391.60002
  20. [20] A.N. Shiryaev. Essentials of stochastic finance. World Scientific, 1998. Zbl0926.62100MR1695318
  21. [21] T. Yamada. Principal values of Brownian local times and their related topics.// Itô's stochastic calculus and probability theory. Springer, 1996, p. 413-422. Zbl0878.60049MR1439540
  22. [22] M. Yor. Loi de l'indice du lacet brownien et distribution de Hartman-Watson.// Z.W.53 (1980), p. 71-95. Zbl0436.60057MR576898
  23. [23] M. Yor. Sur la transformée de Hilbert des temps locaux browniens et une extension de la formule d'Itô.// Lecture Notes in Mathematics, 920 (1982), p. 238-247. Zbl0495.60080MR658687
  24. [24] M. Yor. On some exponential functionals of Brownian motion.// Advances in Applied Probability, 24 (1992), No. 3, p. 509-531. Zbl0765.60084MR1174378
  25. [25] M. Yor. Some aspects of Brownian motion. Part II: Some recent martingale problems. Birkhäuser, 1997. Zbl0880.60082MR1442263

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.