Some remarks on the martingales satisfying the structure equation
Tsung Ming Chao; Ching Sung Chou
Séminaire de probabilités de Strasbourg (2001)
- Volume: 35, page 87-97
Access Full Article
topHow to cite
topChao, Tsung Ming, and Chou, Ching Sung. "Some remarks on the martingales satisfying the structure equation ${[X,X]}_t= t+\int _0^t\beta X_{s^-}\,dX_s$." Séminaire de probabilités de Strasbourg 35 (2001): 87-97. <http://eudml.org/doc/114081>.
@article{Chao2001,
author = {Chao, Tsung Ming, Chou, Ching Sung},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {martingale; structure equation; path property; local time; Bouleau-Yor extension; Itô’s formula; Burkholder-Davis-Gundy type inequality},
language = {eng},
pages = {87-97},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Some remarks on the martingales satisfying the structure equation $\{[X,X]\}_t= t+\int _0^t\beta X_\{s^-\}\,dX_s$},
url = {http://eudml.org/doc/114081},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Chao, Tsung Ming
AU - Chou, Ching Sung
TI - Some remarks on the martingales satisfying the structure equation ${[X,X]}_t= t+\int _0^t\beta X_{s^-}\,dX_s$
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 87
EP - 97
LA - eng
KW - martingale; structure equation; path property; local time; Bouleau-Yor extension; Itô’s formula; Burkholder-Davis-Gundy type inequality
UR - http://eudml.org/doc/114081
ER -
References
top- [1] J. Azéma and M. Yor, Etude d'une martingale remarquable. Séminaire de Probab. XXIII. LNM, vol. 1372, p. 88-130, Springer-Verlag1989. Zbl0743.60045MR1022900
- [2] D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probab.1, p. 19-42, 1973. Zbl0301.60035MR365692
- [3] N. Bouleau and M. Yor, Sur la variation quadratique des temps locaux de certaines semimartingales. C. R. Acad. Sc.Paris292, p. 491-494, 1981. Zbl0476.60046MR612544
- [4] T.M. Chao and C.S. Chou, On some inequalities of multiple stochastic integrals for normal martingales. Stochastics and Stochastics Reports, Vol. 64, p. 161-176, 1998. Zbl1043.60509MR1709281
- [5] T.M. Chao and C.S. Chou, On the local time inequalities for Azéma martingales, to appear in Bernoulli. Zbl0965.60049MR1762554
- [6] C. Dellacherie and P.A. Meyer, Probabilités et Potentiel. Theorie des martingales. Hermann, Paris1976. Zbl0464.60001MR566768
- [7] P.A. Meyer, Un cours sur les intégrales stochastiques. Séminaire de Probab. X. LNM., vol. 511, p. 246-400, 1976. Zbl0374.60070MR501332
- [8] M. Emery, On the Azéma martingales. Séminaire de Probab. XXIII. LNM, vol. 1372, p. 66-87, Springer-Verlag, 1989. Zbl0753.60045MR1022899
- [9] E. Lenglart, Relation de domination entre deux processus. Ann. Inst. H. Poincaré13, n°2, p. 171-179, 1979. Zbl0373.60054
- [10] E. Lenglart, D. Lépingle, M. Pratelli, Présentation unifiée de certaines inégalités de la théorie des martingales. Séminaire de Probab. XIV, LNM, vol.784, p. 26-47, Springer-Verlag1984. Zbl0427.60042MR580107
- [11] P.A. Meyer, Construction de solutions d'équations de structure. Séminaire de Probab. XXIII. LNM, vol. 1372, p. 142-145, 1989. Zbl0739.60050MR1022903
- [12] Philip Protter, Stochastic integration and differential equations, a new approach. Springer-VerlagBerlin Heidelberg1990. Zbl0694.60047MR1037262
- [13] J. Ma, P. Protter and J.S. Martin, Anticipating integrals for a class of martingales. Bernoulli4(1), p. 81-114, 1998. Zbl0897.60058MR1611879
- [14] H.L. Royden, Real Analysis. The Macmillan Company, New York1963. Zbl0121.05501MR151555
- [15] M. Yor, Sur la continuité des temps locaux associés à certaines semimartingales. Temps Locaux. Astérisque52-53, p. 219-222, 1978.
- [16] M. Yor, Les inégalités de sous-martingales comme conséquences de la relation de domination. Stochastics3 p. 1-15, 1979. Zbl0437.60038MR546696
- [17] M. Yor, Sur la transformée de Hilbert des temps locaux browniens et une extension de la formule d'Ito. Séminaire de Probab. XVI. LNM, vol. 920, p. 238-247, Springer-Verlag1982. Zbl0495.60080MR658687
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.