Random matrices, non-colliding processes and queues
Séminaire de probabilités de Strasbourg (2002)
- Volume: 36, page 165-182
Access Full Article
topHow to cite
topO'Connell, Neil. "Random matrices, non-colliding processes and queues." Séminaire de probabilités de Strasbourg 36 (2002): 165-182. <http://eudml.org/doc/114084>.
@article{OConnell2002,
author = {O'Connell, Neil},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {random matrix; non-colliding process; queueing theory; Brownian motion; eigenvalue; Poisson process; percolation; polymer},
language = {eng},
pages = {165-182},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Random matrices, non-colliding processes and queues},
url = {http://eudml.org/doc/114084},
volume = {36},
year = {2002},
}
TY - JOUR
AU - O'Connell, Neil
TI - Random matrices, non-colliding processes and queues
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 165
EP - 182
LA - eng
KW - random matrix; non-colliding process; queueing theory; Brownian motion; eigenvalue; Poisson process; percolation; polymer
UR - http://eudml.org/doc/114084
ER -
References
top- [1] F. Baccelli, A. Borovkov and J. Mairesse. Asymptotic results on infinite tandem queueing networks. Probab. Theor. Rel. Fields118, n. 3, p. 365-405, 2000. Zbl0976.60088MR1800538
- [2] F. Baccelli, G. Cohen, G.J. Olsder and J.-P. Quadrat. Synchronization and Linearity : An Algebra for Discrete Event Systems. Wiley, 1992. Zbl0824.93003MR1204266
- [3] J. Baik. Random vicious walks and random matrices. Comm. Pure Appl. Math.53 (2000) 1385-1410. Zbl1026.60071MR1773413
- [4] J. Baik, P. Deift and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc.12 (1999), no. 4,1119-1178. Zbl0932.05001MR1682248
- [5] Yu. Baryshnikov. GUES and queues. Probab. Theor. Rel. Fields119 (2001) 256-274. Zbl0980.60042MR1818248
- [6] Ph. Biane. Quelques propriétés du mouvement brownien dans un cone. Stoch. Proc. Appl.53 (1994), no. 2, 233-240. Zbl0812.60067MR1302912
- [7] Ph. Biane. Théorème de Ney-Spitzer sur le dual de SU(2). Trans. Amer. Math. Soc.345, no. 1 (1994) 179-194. Zbl0814.60064MR1225572
- [8] Ph. Bougerol and Th. Jeulin. Paths in Weyl chambers and random matrices. Preprint. MR1942321
- [9] P. Brémaud. Point Processes and Queues: Martingale Dynamics. Springer-Verlag, Berlin, 1981. Zbl0478.60004MR636252
- [10] P. Brémaud. Markov Chains, Gibbs Fields, Monte-Carlo Simulation, and Queues. Texts in App. Maths., vol. 31. Springer, 1999. Zbl0949.60009MR1689633
- [11] P.J. Burke. The output of a queueing system. Operations Research4 (1956), no. 6, 699-704. MR83416
- [12] Ph. Carmona, F. Petit and M. Yor. Exponential functionals of Lévy processes. In: Lévy Processes: Theory and Applications, eds. O. Barndorff-Nielsen, T. Mikosch and S. Resnick. Birkhäuser, 2001. Zbl0979.60038MR1833691
- [13] Ph. Carmona, F. Petit and M. Yor. An identity in law involving reflecting Brownian motion, derived for generalized arc-sine laws for perturbed Brownian motions. Stoch. Proc. Appl. (1999) 323-334. Zbl0965.60074MR1671824
- [14] E. Cépa and D. Lépingle. Diffusing particles with electrostatic repulsion. Probab. Th. Rel. Fields107 (1997), no. 4, 429-449. Zbl0883.60089MR1440140
- [15] J.W. Cohen. On the queueing process of lanes. Internal reportPhilips Telecommunicatie Industrie, Hilversum (NL). October 2, 1956.
- [16] B. Derrida. Directed polymers in a random medium. Physica A 163 (1990) 71-84. MR1043640
- [17] C. Donati-Martin, H. Matsumoto and M. Yor. Some absolute continuity relationships for certain anticipative transformations of geometric Brownian motions. Pub. RIMS, Kyoto, vol. 37, no. 3, p295-326. Zbl1033.60085MR1855425
- [18] C. Donati-Martin, H. Matsumoto and M. Yor. The law of geometric Brownian motion and its integral, revisited; application to conditional moments. To appear in the Proceedings of the First Bachelier Conference, Springer, 2001. Zbl1030.91029MR1960566
- [19] D. Dufresne. An affine property of the reciprocal Asian option process. Osaka Math J.38 (2001) 17-20. Zbl0987.60026MR1833627
- [20] D. Dufresne. The integral of geometric Brownian motionAdv. Appl. Probab.33(1), (2001) 223-241. Zbl0980.60103MR1825324
- [21] F.J. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys.3 (1962) 1191-1198. Zbl0111.32703MR148397
- [22] P.J. Forrester. Random walks and random permutations. Preprint, 1999. (XXX: math.CO/9907037) Zbl0982.82016MR1752728
- [23] A.J. Ganesh. Large deviations of the sojourn time for queues in series. Ann. Oper. Res.79:3-26, 1998. Zbl0896.90095MR1630872
- [24] P.W. Glynn and W. Whitt. Departures from many queues in series. Ann. Appl. Prob.1 (1991), no. 4, 546-572. Zbl0749.60090MR1129774
- [25] D. Grabiner. Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. IHP35 (1999), no. 2, 177-204. Zbl0937.60075MR1678525
- [26] J. Gravner, C.A. Tracy and H. Widom. Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys.102 (2001), nos. 5-6, 1085-1132. Zbl0989.82030MR1830441
- [27] B.M. Hambly, James Martin and Neil O'Connell. Concentration results for a Brownian directed percolation problem. Preprint. Zbl1075.60562MR1935124
- [28] B.M. Hambly, James Martin and Neil O'Connell. Pitman's 2M — X theorem for skip-free random walks with Markovian increments. Elect. Commun. Probab., Vol. 6 (2001) Paper no. 7, pages 73-77. Zbl0985.60070MR1855343
- [29] J.M. Harrison and R.J. Williams. On the quasireversibility of a multiclass Brownian service station. Ann. Probab.18 (1990) 1249-1268. Zbl0709.60081MR1062068
- [30] D. Hobson and W. Werner. Non-colliding Brownian motion on the circle, Bull. Math. Soc.28 (1996) 643-650. Zbl0853.60060MR1405497
- [31] K. Johansson. Shape fluctuations and random matrices. Commun. Math. Phys.209 (2000) 437-476. Zbl0969.15008MR1737991
- [32] K. Johansson. Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math. (2) 153 (2001), no. 1, 259-296. Zbl0984.15020MR1826414
- [33] I.M. Johnstone. On the distribution of the largest principal component. Ann. Stat.29, No. 2 (2001). Zbl1016.62078MR1863961
- [34] F.P. Kelly. Reversibility and Stochastic Networks. Wiley, 1979. Zbl0422.60001MR554920
- [35] Wolfgang König and Neil O'Connell. Eigenvalues of the Laguerre process as non-colliding squared Bessel processes. Elect. Commun. Probab., to appear. Zbl1011.15012MR1871699
- [36] Wolfgang König, Neil O'Connell and Sebastien Roch. Non-colliding random walks, tandem queues and the discrete ensembles. Elect. J. Probab., to appear. Zbl1007.60075MR1887625
- [37] H. Matsumoto and M. Yor. A version of Pitman's 2M — X theorem for geometric Brownian motions. C.R. Acad. Sci.Paris328 (1999), Série I, 1067-1074. Zbl0936.60076MR1696208
- [38] H. Matsumoto and M. Yor. A relationship between Brownian motions with opposite drifts via certain enlargements of the Brownian filtration. Osaka Math J.38 (2001) 1-16. Zbl0981.60078MR1833628
- [39] M.L. Mehta. Random Matrices: Second Edition. Academic Press, 1991. Zbl0780.60014MR1083764
- [40] P.M. Morse. Stochastic properties of waiting lines. Operations Research3 (1955) 256. MR70889
- [41] E.G. Muth (1979). The reversibility property of production lines. Management Sci.25, 152-158. Zbl0419.90044MR537320
- [42] I. Norros and P. Salminen. On unbounded Brownian storage. Preprint.
- [43] G.G. O'Brien. Some queueing problems. J. Soc. Indust. Appl. Math.2 (1954) 134. Zbl0058.34703
- [44] Neil O'Connell. Directed percolation and tandem queues. DIAS Technical Report DIAS-APG-9912.
- [45] Neil O'Connell and A. Unwin. Collision times and exit times from cones: a duality. Stochastic Process. Appl.43 (1992), no. 2, 291-301. Zbl0765.60083MR1191152
- [46] Neil O'Connell and Marc Yor. Brownian analogues of Burke's theorem. Stoch. Proc. Appl.96 (2) (2001) pp. 285-304. Zbl1058.60078MR1865759
- [47] Neil O'Connell and Marc Yor. A representation for non-colliding random walks. Elect. Commun. Probab., to appear. Zbl1037.15019MR1887169
- [48] J.W. Pitman. One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab.7 (1975) 511-526. Zbl0332.60055MR375485
- [49] J.W. Pitman and L.C.G. Rogers. Markov functions. Ann. Probab.9 (1981) 573-582. Zbl0466.60070MR624684
- [50] E. Reich. Waiting times when queues are in tandem. Ann. Math. Statist.28 (1957) 768-773. Zbl0085.34705MR93060
- [51] Ph. Robert. Réseaux et files d'attente: méthodes probabilistes. Math. et Applications, vol. 35. Springer, 2000. Zbl0971.60088MR2117955
- [52] T. Seppäläinen. Hydrodynamic scaling, convex duality, and asymptotic shapes of growth models. Markov Proc. Rel. Fields4, 1-26, 1998. Zbl0906.60082MR1625007
- [53] W. Szczotka and F.P. Kelly (1990). Asymptotic stationarity of queues in series and the heavy traffic approximation. Ann. Prob.18, 1232-1248. Zbl0726.60092MR1062067
- [54] C.A. Tracy and H. Widom. Fredholm determinants, differential equations and matrix models. Comm. Math. Phys.163 (1994), no. 1, 33-72. Zbl0813.35110MR1277933
- [55] David Williams. Path decomposition and continuity of local time for one-dimensional diffusions I. Proc. London Math. Soc.28 (1974), no. 3, 738-768. Zbl0326.60093MR350881
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.