About projections of logarithmic Sobolev inequalities

Laurent Miclo

Séminaire de probabilités de Strasbourg (2002)

  • Volume: 36, page 201-221

How to cite


Miclo, Laurent. "About projections of logarithmic Sobolev inequalities." Séminaire de probabilités de Strasbourg 36 (2002): 201-221. <http://eudml.org/doc/114088>.

author = {Miclo, Laurent},
journal = {Séminaire de probabilités de Strasbourg},
language = {eng},
pages = {201-221},
publisher = {Springer - Lecture Notes in Mathematics},
title = {About projections of logarithmic Sobolev inequalities},
url = {http://eudml.org/doc/114088},
volume = {36},
year = {2002},

AU - Miclo, Laurent
TI - About projections of logarithmic Sobolev inequalities
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 201
EP - 221
LA - eng
UR - http://eudml.org/doc/114088
ER -


  1. [1] D. Bakry. Remarques sur les semigroupes de Jacobi. Astérisque, (236):23-39, 1996. Hommage à P. A. Meyer et J. Neveu. Zbl0859.47026MR1417973
  2. [2] S.G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163(1):1-28, 1999. Zbl0924.46027MR1682772
  3. [3] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. The Annals of Applied Probability, 6(3):695-750, 1996. Zbl0867.60043MR1410112
  4. [4] K.T. Fang, S. Kotz, and K.W. Ng. Symmetric multivariate and related distributions. Chapman and Hall Ltd., London, 1990. Zbl0699.62048MR1071174
  5. [5] L. Gross. Logarithmic Sobolev inequalities. American Journal of Mathematics, 97(4):1061-1083, 1976. Zbl0318.46049MR420249
  6. [6] R. Holley and D. Stroock. Simulated annealing via Sobolev inequalities. Communications in Mathematical Physics, 115:553-569, 1988. Zbl0643.60092MR933455
  7. [7] A. Korzeniowski and D.W. Stroock. An example in the theory of hypercontractive semigroups. Proc. Amer. Math. Soc., 94(1):87-90, 1985. Zbl0577.47043MR781062
  8. [8] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, pages 120-216. Springer, Berlin, 1999. Zbl0957.60016MR1767995
  9. [9] L. Miclo. An example of application of discrete Hardy's inequalities. Markov Processes and Related Fields, 5(3):319-330, 1999. Zbl0942.60081MR1710983
  10. [10] L. Miclo. Sur l'inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre. Preprint, 2001. 
  11. [11] B. Muckenhoupt. Hardy's inequality with weights. Studia Mathematica, XLIV:31-38, 1972. Zbl0236.26015
  12. [12] N. Shimakura. Équations différentielles provenant de la génétique de population. In Séminaire Goulaouic-Schwartz (1975/1976), Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 15, page 10. Centre Math., École Polytech., Palaiseau, 1976. Zbl0347.35045MR504057
  13. [13] W. Stannat. On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators. Ann. Probab., 28(2):667-684, 2000. Zbl1044.60037MR1782270
  14. [14] G. Szegö. Orthogonal polynomials. American Mathematical Society, Providence, R.I., third edition, 1967. American Mathematical Society Colloquium Publications, Vol. 23. Zbl65.0278.03MR310533

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.