About projections of logarithmic Sobolev inequalities
Séminaire de probabilités de Strasbourg (2002)
- Volume: 36, page 201-221
Access Full Article
topHow to cite
topMiclo, Laurent. "About projections of logarithmic Sobolev inequalities." Séminaire de probabilités de Strasbourg 36 (2002): 201-221. <http://eudml.org/doc/114088>.
@article{Miclo2002,
author = {Miclo, Laurent},
journal = {Séminaire de probabilités de Strasbourg},
language = {eng},
pages = {201-221},
publisher = {Springer - Lecture Notes in Mathematics},
title = {About projections of logarithmic Sobolev inequalities},
url = {http://eudml.org/doc/114088},
volume = {36},
year = {2002},
}
TY - JOUR
AU - Miclo, Laurent
TI - About projections of logarithmic Sobolev inequalities
JO - Séminaire de probabilités de Strasbourg
PY - 2002
PB - Springer - Lecture Notes in Mathematics
VL - 36
SP - 201
EP - 221
LA - eng
UR - http://eudml.org/doc/114088
ER -
References
top- [1] D. Bakry. Remarques sur les semigroupes de Jacobi. Astérisque, (236):23-39, 1996. Hommage à P. A. Meyer et J. Neveu. Zbl0859.47026MR1417973
- [2] S.G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163(1):1-28, 1999. Zbl0924.46027MR1682772
- [3] P. Diaconis and L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. The Annals of Applied Probability, 6(3):695-750, 1996. Zbl0867.60043MR1410112
- [4] K.T. Fang, S. Kotz, and K.W. Ng. Symmetric multivariate and related distributions. Chapman and Hall Ltd., London, 1990. Zbl0699.62048MR1071174
- [5] L. Gross. Logarithmic Sobolev inequalities. American Journal of Mathematics, 97(4):1061-1083, 1976. Zbl0318.46049MR420249
- [6] R. Holley and D. Stroock. Simulated annealing via Sobolev inequalities. Communications in Mathematical Physics, 115:553-569, 1988. Zbl0643.60092MR933455
- [7] A. Korzeniowski and D.W. Stroock. An example in the theory of hypercontractive semigroups. Proc. Amer. Math. Soc., 94(1):87-90, 1985. Zbl0577.47043MR781062
- [8] M. Ledoux. Concentration of measure and logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXIII, pages 120-216. Springer, Berlin, 1999. Zbl0957.60016MR1767995
- [9] L. Miclo. An example of application of discrete Hardy's inequalities. Markov Processes and Related Fields, 5(3):319-330, 1999. Zbl0942.60081MR1710983
- [10] L. Miclo. Sur l'inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre. Preprint, 2001.
- [11] B. Muckenhoupt. Hardy's inequality with weights. Studia Mathematica, XLIV:31-38, 1972. Zbl0236.26015
- [12] N. Shimakura. Équations différentielles provenant de la génétique de population. In Séminaire Goulaouic-Schwartz (1975/1976), Équations aux dérivées partielles et analyse fonctionnelle, Exp. No. 15, page 10. Centre Math., École Polytech., Palaiseau, 1976. Zbl0347.35045MR504057
- [13] W. Stannat. On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators. Ann. Probab., 28(2):667-684, 2000. Zbl1044.60037MR1782270
- [14] G. Szegö. Orthogonal polynomials. American Mathematical Society, Providence, R.I., third edition, 1967. American Mathematical Society Colloquium Publications, Vol. 23. Zbl65.0278.03MR310533
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.