Uniqueness for reflecting brownian motion in lip domains
Richard F. Bass; Krzysztof Burdzy; Zhen-Qing Chen
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 2, page 197-235
- ISSN: 0246-0203
Access Full Article
topHow to cite
topBass, Richard F., Burdzy, Krzysztof, and Chen, Zhen-Qing. "Uniqueness for reflecting brownian motion in lip domains." Annales de l'I.H.P. Probabilités et statistiques 41.2 (2005): 197-235. <http://eudml.org/doc/77842>.
@article{Bass2005,
author = {Bass, Richard F., Burdzy, Krzysztof, Chen, Zhen-Qing},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Skorokhod equation; local time; Lipschitz domain; weak uniqueness; strong existence; Pathwise uniqueness},
language = {eng},
number = {2},
pages = {197-235},
publisher = {Elsevier},
title = {Uniqueness for reflecting brownian motion in lip domains},
url = {http://eudml.org/doc/77842},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Bass, Richard F.
AU - Burdzy, Krzysztof
AU - Chen, Zhen-Qing
TI - Uniqueness for reflecting brownian motion in lip domains
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 2
SP - 197
EP - 235
LA - eng
KW - Skorokhod equation; local time; Lipschitz domain; weak uniqueness; strong existence; Pathwise uniqueness
UR - http://eudml.org/doc/77842
ER -
References
top- [1] R. Atar, K. Burdzy, On nodal lines of Neumann eigenfunctions, Electron. Comm. Probab.7 (2002) 129-139, paper 14. Zbl1018.35059MR1937899
- [2] R. Atar, K. Burdzy, On Neumann eigenfunctions in lip domains, J. Amer. Math. Soc.17 (2004) 243-265. Zbl1151.35322MR2051611
- [3] R. Bañuelos, K. Burdzy, On the “hot spots” conjecture of J. Rauch, J. Funct. Anal.164 (1999) 1-33. Zbl0938.35045
- [4] R.F. Bass, Probabilistic Techniques in Analysis, Springer, New York, 1995. Zbl0817.60001MR1329542
- [5] R.F. Bass, Uniqueness for the Skorokhod equation with normal reflection in Lipschitz domains, Electron. J. Probab.1 (11) (1996). Zbl0888.60067MR1423464
- [6] R.F. Bass, Diffusions and Elliptic Operators, Springer, New York, 1997. Zbl0914.60009MR1483890
- [7] R.F. Bass, Stochastic differential equations driven by symmetric stable processes, in: Séminaire de Probabilités XXXVI, Springer, New York, 2003, pp. 302-313. Zbl1039.60056MR1971592
- [8] R.F. Bass, K. Burdzy, Fiber Brownian motion and the ‘hot spots’ problem, Duke Math. J.105 (2000) 25-58. Zbl1006.60078
- [9] R.F. Bass, K. Burdzy, Z.-Q. Chen, Stochastic differential equations driven by stable processes for which pathwise uniqueness fails, Stochastic Process. Appl.111 (2004) 1-15. Zbl1111.60038MR2049566
- [10] R.F. Bass, E.P. Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab.19 (1991) 486-508. Zbl0732.60090MR1106272
- [11] R.F. Bass, E.P. Hsu, The semimartingale structure of reflecting Brownian motion, Proc. Amer. Math. Soc.108 (1990) 1007-1010. Zbl0694.60075MR1007487
- [12] R.F. Bass, E.P. Hsu, Pathwise uniqueness for reflecting Brownian motion in Euclidean domains, Probab. Theory Related Fields117 (2000) 183-200. Zbl0957.60070MR1771660
- [13] K. Bogdan, K. Burdzy, Z.-Q. Chen, Censored stable processes, Probab. Theory Related Fields127 (2003) 89-152. Zbl1032.60047MR2006232
- [14] K. Burdzy, Brownian paths and cones, Ann. Probab.13 (1985) 1006-1010. Zbl0574.60053MR799436
- [15] K. Burdzy, Z.-Q. Chen, Coalescence of synchronous couplings, Probab. Theory Related Fields123 (2002) 553-578. Zbl1004.60080MR1921013
- [16] K. Burdzy, Z.-Q. Chen, J. Sylvester, Heat equation and reflected Brownian motion in time dependent domains II, J. Funct. Anal.204 (2003) 1-34. Zbl1058.60062MR2004743
- [17] K. Burdzy, W. Kendall, Efficient Markovian couplings: examples and counterexamples, Ann. Appl. Probab.10 (2000) 362-409. Zbl1054.60077MR1768241
- [18] K. Burdzy, D. Marshall, Non-polar points for reflected Brownian motion, Ann. Inst. Henri Poincaré Probab. Statist.29 (1993) 199-228. Zbl0773.60077MR1227417
- [19] K. Burdzy, W. Werner, A counterexample to the “hot spots” conjecture, Ann. Math.149 (1999) 309-317. Zbl0919.35094
- [20] Z.-Q. Chen, On reflecting diffusion processes and Skorokhod decomposition, Probab. Theory Related Fields94 (1993) 281-315. Zbl0767.60074MR1198650
- [21] Z.-Q. Chen, Pseudo Jordan domains and reflecting Brownian motions, Probab. Theory Related Fields94 (1992) 271-280. Zbl0767.60079MR1191110
- [22] Z.-Q. Chen, Reflecting Brownian motions and a deletion result for Sobolev spaces of order , Potential Anal.5 (1996) 383-401. Zbl0859.46021MR1401073
- [23] Z.-Q. Chen, P.J. Fitzsimmons, R.J. Williams, Reflecting Brownian motions: quasimartingales and strong Caccioppoli sets, Potential Anal.2 (1993) 219-243. Zbl0812.60065MR1245240
- [24] P. Dupuis, H. Ishii, SDEs with oblique reflection on nonsmooth domains, Ann. Probab.21 (1993) 554-580. Zbl0787.60099MR1207237
- [25] P. Dupuis, K. Ramanan, Convex duality and the Skorokhod Problem I, Probab. Theory Related Fields115 (1999) 153-195. Zbl0944.60061MR1720348
- [26] R.D. DeBlassie, E.H. Toby, On the semimartingale representation of reflecting Brownian motion in a cusp, Probab. Theory Related Fields94 (1993) 505-524. Zbl0791.60070MR1201557
- [27] E.B. Fabes, D.W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Mech. Rat. Anal.96 (1986) 327-338. Zbl0652.35052MR855753
- [28] P.J. Fitzsimmons, Time changes of symmetric Markov processes and a Feynman–Kac formula, J. Theoret. Probab.2 (1989) 485-501. Zbl0683.60052MR1011201
- [29] G.B. Folland, Real Analysis, Wiley, 1984. Zbl0924.28001MR767633
- [30] M. Fukushima, A construction of reflecting barrier Brownian motions for bounded domains, Osaka J. Math.4 (1967) 183-215. Zbl0317.60033MR231444
- [31] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
- [32] M. Fukushima, M. Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Related Fields106 (1996) 521-557. Zbl0867.60047MR1421991
- [33] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland/Kodansha, Amsterdam, 1989. Zbl0684.60040MR1011252
- [34] D.S. Jerison, C.E. Kenig, Boundary Value Problems in Lipschitz Domains, Studies in Partial Differential Equations, Math. Assoc. Amer., Washington, DC, 1982. Zbl0529.31007MR716504
- [35] J.-F. Le Gall, Mouvement brownien, cônes et processus stables, Probab. Theory Related Fields76 (1987) 587-627. Zbl0611.60076MR917681
- [36] P.-L. Lions, A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math.37 (1984) 511-537. Zbl0598.60060MR745330
- [37] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991. Zbl0731.60002MR1083357
- [38] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, vol. 2, Itô Calculus, Wiley, New York, 1987. Zbl0627.60001MR921238
- [39] M. Shimura, Excursions in a cone for two-dimensional Brownian motion, J. Math. Kyoto Univ.25 (1985) 433-443. Zbl0582.60048MR807490
- [40] M.L. Silverstein, Symmetric Markov Processes, Lect. Notes in Math., vol. 426, Springer, New York, 1974. Zbl0296.60038MR386032
- [41] D.W. Stroock, S.R.S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math.24 (1971) 147-225. Zbl0227.76131MR277037
- [42] D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer, New York, 1979. Zbl0426.60069MR532498
- [43] L.M. Taylor, R.J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant, Probab. Theory Related Fields96 (1993) 283-317. Zbl0794.60079MR1231926
- [44] R.J. Williams, W.A. Zheng, On reflecting Brownian motion – a weak convergence approach, Ann. Inst. H. Poincaré Probab. Statist.26 (1990) 461-488. Zbl0704.60081MR1066089
- [45] T. Yamada, S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ.11 (1) (1971) 155-167. Zbl0236.60037MR278420
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.