Uniqueness for reflecting brownian motion in lip domains

Richard F. Bass; Krzysztof Burdzy; Zhen-Qing Chen

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 2, page 197-235
  • ISSN: 0246-0203

How to cite

top

Bass, Richard F., Burdzy, Krzysztof, and Chen, Zhen-Qing. "Uniqueness for reflecting brownian motion in lip domains." Annales de l'I.H.P. Probabilités et statistiques 41.2 (2005): 197-235. <http://eudml.org/doc/77842>.

@article{Bass2005,
author = {Bass, Richard F., Burdzy, Krzysztof, Chen, Zhen-Qing},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Skorokhod equation; local time; Lipschitz domain; weak uniqueness; strong existence; Pathwise uniqueness},
language = {eng},
number = {2},
pages = {197-235},
publisher = {Elsevier},
title = {Uniqueness for reflecting brownian motion in lip domains},
url = {http://eudml.org/doc/77842},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Bass, Richard F.
AU - Burdzy, Krzysztof
AU - Chen, Zhen-Qing
TI - Uniqueness for reflecting brownian motion in lip domains
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 2
SP - 197
EP - 235
LA - eng
KW - Skorokhod equation; local time; Lipschitz domain; weak uniqueness; strong existence; Pathwise uniqueness
UR - http://eudml.org/doc/77842
ER -

References

top
  1. [1] R. Atar, K. Burdzy, On nodal lines of Neumann eigenfunctions, Electron. Comm. Probab.7 (2002) 129-139, paper 14. Zbl1018.35059MR1937899
  2. [2] R. Atar, K. Burdzy, On Neumann eigenfunctions in lip domains, J. Amer. Math. Soc.17 (2004) 243-265. Zbl1151.35322MR2051611
  3. [3] R. Bañuelos, K. Burdzy, On the “hot spots” conjecture of J. Rauch, J. Funct. Anal.164 (1999) 1-33. Zbl0938.35045
  4. [4] R.F. Bass, Probabilistic Techniques in Analysis, Springer, New York, 1995. Zbl0817.60001MR1329542
  5. [5] R.F. Bass, Uniqueness for the Skorokhod equation with normal reflection in Lipschitz domains, Electron. J. Probab.1 (11) (1996). Zbl0888.60067MR1423464
  6. [6] R.F. Bass, Diffusions and Elliptic Operators, Springer, New York, 1997. Zbl0914.60009MR1483890
  7. [7] R.F. Bass, Stochastic differential equations driven by symmetric stable processes, in: Séminaire de Probabilités XXXVI, Springer, New York, 2003, pp. 302-313. Zbl1039.60056MR1971592
  8. [8] R.F. Bass, K. Burdzy, Fiber Brownian motion and the ‘hot spots’ problem, Duke Math. J.105 (2000) 25-58. Zbl1006.60078
  9. [9] R.F. Bass, K. Burdzy, Z.-Q. Chen, Stochastic differential equations driven by stable processes for which pathwise uniqueness fails, Stochastic Process. Appl.111 (2004) 1-15. Zbl1111.60038MR2049566
  10. [10] R.F. Bass, E.P. Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab.19 (1991) 486-508. Zbl0732.60090MR1106272
  11. [11] R.F. Bass, E.P. Hsu, The semimartingale structure of reflecting Brownian motion, Proc. Amer. Math. Soc.108 (1990) 1007-1010. Zbl0694.60075MR1007487
  12. [12] R.F. Bass, E.P. Hsu, Pathwise uniqueness for reflecting Brownian motion in Euclidean domains, Probab. Theory Related Fields117 (2000) 183-200. Zbl0957.60070MR1771660
  13. [13] K. Bogdan, K. Burdzy, Z.-Q. Chen, Censored stable processes, Probab. Theory Related Fields127 (2003) 89-152. Zbl1032.60047MR2006232
  14. [14] K. Burdzy, Brownian paths and cones, Ann. Probab.13 (1985) 1006-1010. Zbl0574.60053MR799436
  15. [15] K. Burdzy, Z.-Q. Chen, Coalescence of synchronous couplings, Probab. Theory Related Fields123 (2002) 553-578. Zbl1004.60080MR1921013
  16. [16] K. Burdzy, Z.-Q. Chen, J. Sylvester, Heat equation and reflected Brownian motion in time dependent domains II, J. Funct. Anal.204 (2003) 1-34. Zbl1058.60062MR2004743
  17. [17] K. Burdzy, W. Kendall, Efficient Markovian couplings: examples and counterexamples, Ann. Appl. Probab.10 (2000) 362-409. Zbl1054.60077MR1768241
  18. [18] K. Burdzy, D. Marshall, Non-polar points for reflected Brownian motion, Ann. Inst. Henri Poincaré Probab. Statist.29 (1993) 199-228. Zbl0773.60077MR1227417
  19. [19] K. Burdzy, W. Werner, A counterexample to the “hot spots” conjecture, Ann. Math.149 (1999) 309-317. Zbl0919.35094
  20. [20] Z.-Q. Chen, On reflecting diffusion processes and Skorokhod decomposition, Probab. Theory Related Fields94 (1993) 281-315. Zbl0767.60074MR1198650
  21. [21] Z.-Q. Chen, Pseudo Jordan domains and reflecting Brownian motions, Probab. Theory Related Fields94 (1992) 271-280. Zbl0767.60079MR1191110
  22. [22] Z.-Q. Chen, Reflecting Brownian motions and a deletion result for Sobolev spaces of order 1 , 2 , Potential Anal.5 (1996) 383-401. Zbl0859.46021MR1401073
  23. [23] Z.-Q. Chen, P.J. Fitzsimmons, R.J. Williams, Reflecting Brownian motions: quasimartingales and strong Caccioppoli sets, Potential Anal.2 (1993) 219-243. Zbl0812.60065MR1245240
  24. [24] P. Dupuis, H. Ishii, SDEs with oblique reflection on nonsmooth domains, Ann. Probab.21 (1993) 554-580. Zbl0787.60099MR1207237
  25. [25] P. Dupuis, K. Ramanan, Convex duality and the Skorokhod Problem I, Probab. Theory Related Fields115 (1999) 153-195. Zbl0944.60061MR1720348
  26. [26] R.D. DeBlassie, E.H. Toby, On the semimartingale representation of reflecting Brownian motion in a cusp, Probab. Theory Related Fields94 (1993) 505-524. Zbl0791.60070MR1201557
  27. [27] E.B. Fabes, D.W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Mech. Rat. Anal.96 (1986) 327-338. Zbl0652.35052MR855753
  28. [28] P.J. Fitzsimmons, Time changes of symmetric Markov processes and a Feynman–Kac formula, J. Theoret. Probab.2 (1989) 485-501. Zbl0683.60052MR1011201
  29. [29] G.B. Folland, Real Analysis, Wiley, 1984. Zbl0924.28001MR767633
  30. [30] M. Fukushima, A construction of reflecting barrier Brownian motions for bounded domains, Osaka J. Math.4 (1967) 183-215. Zbl0317.60033MR231444
  31. [31] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Berlin, 1994. Zbl0838.31001MR1303354
  32. [32] M. Fukushima, M. Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Related Fields106 (1996) 521-557. Zbl0867.60047MR1421991
  33. [33] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland/Kodansha, Amsterdam, 1989. Zbl0684.60040MR1011252
  34. [34] D.S. Jerison, C.E. Kenig, Boundary Value Problems in Lipschitz Domains, Studies in Partial Differential Equations, Math. Assoc. Amer., Washington, DC, 1982. Zbl0529.31007MR716504
  35. [35] J.-F. Le Gall, Mouvement brownien, cônes et processus stables, Probab. Theory Related Fields76 (1987) 587-627. Zbl0611.60076MR917681
  36. [36] P.-L. Lions, A.-S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math.37 (1984) 511-537. Zbl0598.60060MR745330
  37. [37] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, 1991. Zbl0731.60002MR1083357
  38. [38] L.C.G. Rogers, D. Williams, Diffusions, Markov Processes, and Martingales, vol. 2, Itô Calculus, Wiley, New York, 1987. Zbl0627.60001MR921238
  39. [39] M. Shimura, Excursions in a cone for two-dimensional Brownian motion, J. Math. Kyoto Univ.25 (1985) 433-443. Zbl0582.60048MR807490
  40. [40] M.L. Silverstein, Symmetric Markov Processes, Lect. Notes in Math., vol. 426, Springer, New York, 1974. Zbl0296.60038MR386032
  41. [41] D.W. Stroock, S.R.S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math.24 (1971) 147-225. Zbl0227.76131MR277037
  42. [42] D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes, Springer, New York, 1979. Zbl0426.60069MR532498
  43. [43] L.M. Taylor, R.J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant, Probab. Theory Related Fields96 (1993) 283-317. Zbl0794.60079MR1231926
  44. [44] R.J. Williams, W.A. Zheng, On reflecting Brownian motion – a weak convergence approach, Ann. Inst. H. Poincaré Probab. Statist.26 (1990) 461-488. Zbl0704.60081MR1066089
  45. [45] T. Yamada, S. Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ.11 (1) (1971) 155-167. Zbl0236.60037MR278420

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.