Effets de bord pour un tambour à bord fractal

Jean Brossard

Séminaire de théorie spectrale et géométrie (1984-1985)

  • Volume: 3, page 1-14
  • ISSN: 1624-5458

How to cite

top

Brossard, Jean. "Effets de bord pour un tambour à bord fractal." Séminaire de théorie spectrale et géométrie 3 (1984-1985): 1-14. <http://eudml.org/doc/114238>.

@article{Brossard1984-1985,
author = {Brossard, Jean},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Brownian estimates; capacity},
language = {fre},
pages = {1-14},
publisher = {Institut Fourier},
title = {Effets de bord pour un tambour à bord fractal},
url = {http://eudml.org/doc/114238},
volume = {3},
year = {1984-1985},
}

TY - JOUR
AU - Brossard, Jean
TI - Effets de bord pour un tambour à bord fractal
JO - Séminaire de théorie spectrale et géométrie
PY - 1984-1985
PB - Institut Fourier
VL - 3
SP - 1
EP - 14
LA - fre
KW - Brownian estimates; capacity
UR - http://eudml.org/doc/114238
ER -

References

top
  1. [1] AZENCOTT R. " Grandes déviations et applications". Ecole d'été de Probabilités de Saint Flour VIII ( 1978). Lecture note in Mathematics 774. Springer-Verlag. Zbl0435.60028MR590626
  2. [2] BERARD P. ( 1983), Remarques sur la conjecture de Weyl. Compos. Math. 48, 35-53. Zbl0538.58037MR700579
  3. [3] BERRY M. ( 1979), " Distribution of modes in fractal resonators". Structural stability in Physics. Ed. W. Güttinger and H. Eikemeier. Springer Verlag, 51-53. Zbl0419.35077MR556688
  4. [4] BERRY M. ( 1980), " Some geometrical aspects of wave motion : wavefront, dislocations, diffraction catastrophes, diffractals". Geometry of the Lapiace Operator. Proc. Symp. Pure Math, vol. 36, 13-38, Amer. Math. Soc. Providence. Zbl0437.73014MR573427
  5. [5] BROSSARD J. , CARMONA R. ( 1985), " Can one hear the dimension of a fractal ?" Preprint. Zbl0607.58043MR834484
  6. [6] GROMES D. ( 1966), " Uber die asymptotische Verteilung der Eigenwerte des Laplace Operators für Gebiete auf der Kugeloberfläche". Math. Z. 94, 110-121. Zbl0146.35002MR199575
  7. [7] IVRII V. ( 1980), " Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary". Funct. Anal. Appl. 14, 98-106. Zbl0453.35068MR575202
  8. [8] KAC M. ( 1966), " Can one hear the shape of a drum ?". Amer. Math. Monthly 73, 1-23. Zbl0139.05603MR201237
  9. [9] KUZNETSOV ( 1966), " Asymptotic distribution of the eigenfrequencies of a plane membrane in the case when the variables can be separated". Diff. Equat. 2, 715-723. Zbl0202.25201
  10. [10] MELROSE R. ( 1980), " Weyl's conjecture for manifolds with concave boundary". Geometry of the Laplace Operator, Proc. Symp. Pure Math. vol. 36, 254-274, Amer. Math. Soc. Providence. Zbl0436.58024MR573438
  11. [11] PETKOV V. ( 1985), " Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux". Exposé XII (26.2.85). Séminaire Bony-Sjöstrand-Meyer. Ecole Polytechnique. Zbl0597.35092MR819778
  12. [12] PORT S., and STONE C. ( 1978), " Brownien motion and classical potential theory". Academic Press, New-York. Zbl0413.60067MR492329
  13. [13] SIMON B. ( 1979), Functional integration and quantum Physics. Academic Press, New York. Zbl0434.28013MR544188

NotesEmbed ?

top

You must be logged in to post comments.