Effets de bord pour un tambour à bord fractal

Jean Brossard

Séminaire de théorie spectrale et géométrie (1984-1985)

  • Volume: 3, page 1-14
  • ISSN: 1624-5458

How to cite

top

Brossard, Jean. "Effets de bord pour un tambour à bord fractal." Séminaire de théorie spectrale et géométrie 3 (1984-1985): 1-14. <http://eudml.org/doc/114238>.

@article{Brossard1984-1985,
author = {Brossard, Jean},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Brownian estimates; capacity},
language = {fre},
pages = {1-14},
publisher = {Institut Fourier},
title = {Effets de bord pour un tambour à bord fractal},
url = {http://eudml.org/doc/114238},
volume = {3},
year = {1984-1985},
}

TY - JOUR
AU - Brossard, Jean
TI - Effets de bord pour un tambour à bord fractal
JO - Séminaire de théorie spectrale et géométrie
PY - 1984-1985
PB - Institut Fourier
VL - 3
SP - 1
EP - 14
LA - fre
KW - Brownian estimates; capacity
UR - http://eudml.org/doc/114238
ER -

References

top
  1. [1] AZENCOTT R. " Grandes déviations et applications". Ecole d'été de Probabilités de Saint Flour VIII ( 1978). Lecture note in Mathematics 774. Springer-Verlag. Zbl0435.60028MR590626
  2. [2] BERARD P. ( 1983), Remarques sur la conjecture de Weyl. Compos. Math. 48, 35-53. Zbl0538.58037MR700579
  3. [3] BERRY M. ( 1979), " Distribution of modes in fractal resonators". Structural stability in Physics. Ed. W. Güttinger and H. Eikemeier. Springer Verlag, 51-53. Zbl0419.35077MR556688
  4. [4] BERRY M. ( 1980), " Some geometrical aspects of wave motion : wavefront, dislocations, diffraction catastrophes, diffractals". Geometry of the Lapiace Operator. Proc. Symp. Pure Math, vol. 36, 13-38, Amer. Math. Soc. Providence. Zbl0437.73014MR573427
  5. [5] BROSSARD J. , CARMONA R. ( 1985), " Can one hear the dimension of a fractal ?" Preprint. Zbl0607.58043MR834484
  6. [6] GROMES D. ( 1966), " Uber die asymptotische Verteilung der Eigenwerte des Laplace Operators für Gebiete auf der Kugeloberfläche". Math. Z. 94, 110-121. Zbl0146.35002MR199575
  7. [7] IVRII V. ( 1980), " Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary". Funct. Anal. Appl. 14, 98-106. Zbl0453.35068MR575202
  8. [8] KAC M. ( 1966), " Can one hear the shape of a drum ?". Amer. Math. Monthly 73, 1-23. Zbl0139.05603MR201237
  9. [9] KUZNETSOV ( 1966), " Asymptotic distribution of the eigenfrequencies of a plane membrane in the case when the variables can be separated". Diff. Equat. 2, 715-723. Zbl0202.25201
  10. [10] MELROSE R. ( 1980), " Weyl's conjecture for manifolds with concave boundary". Geometry of the Laplace Operator, Proc. Symp. Pure Math. vol. 36, 254-274, Amer. Math. Soc. Providence. Zbl0436.58024MR573438
  11. [11] PETKOV V. ( 1985), " Propriétés génériques des rayons réfléchissants et applications aux problèmes spectraux". Exposé XII (26.2.85). Séminaire Bony-Sjöstrand-Meyer. Ecole Polytechnique. Zbl0597.35092MR819778
  12. [12] PORT S., and STONE C. ( 1978), " Brownien motion and classical potential theory". Academic Press, New-York. Zbl0413.60067MR492329
  13. [13] SIMON B. ( 1979), Functional integration and quantum Physics. Academic Press, New York. Zbl0434.28013MR544188

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.