Un survol de la théorie des variétés affines

Yves Carrière

Séminaire de théorie spectrale et géométrie (1987-1988)

  • Volume: 6, page 9-22
  • ISSN: 1624-5458

How to cite

top

Carrière, Yves. "Un survol de la théorie des variétés affines." Séminaire de théorie spectrale et géométrie 6 (1987-1988): 9-22. <http://eudml.org/doc/114285>.

@article{Carrière1987-1988,
author = {Carrière, Yves},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {9-22},
publisher = {Institut Fourier},
title = {Un survol de la théorie des variétés affines},
url = {http://eudml.org/doc/114285},
volume = {6},
year = {1987-1988},
}

TY - JOUR
AU - Carrière, Yves
TI - Un survol de la théorie des variétés affines
JO - Séminaire de théorie spectrale et géométrie
PY - 1987-1988
PB - Institut Fourier
VL - 6
SP - 9
EP - 22
LA - fre
UR - http://eudml.org/doc/114285
ER -

References

top
  1. [A] AUSLANDER L. - Simply transitive groups of affine motions, Am. J. Math., 99 ( 1977), 809-821. Zbl0357.22006MR447470
  2. [Be1] BENZÉCRI J.P. - Variétés localement affines et projectives, Bull. Soc. Math. France, 88 ( 1960), 229-332. Zbl0098.35204MR124005
  3. [Be2] BENZÉCRI J.P. - Sur la classe d'Euler (ou Stiefel-Whitney) de fibres offins plats, C. R. Acad. Sci. Paris, 260 ( 1965), 5442-5444. Zbl0145.20205MR178477
  4. [Bo] BOYOM N. - Structures affines sur les groupes de Lie nilpotents, Prépublication Université de Montpellier, 1985. 
  5. [Bi] BIEBERBACH L. - Über die Bewegungsgruppen der Euklidische Râume I, Math. Ann., 70 ( 1911), 297-336. Zbl42.0144.02MR1511623JFM42.0144.02
  6. [Bu] BUSER P. - A geometric proof of Bieberbach's theorems on crystallographic groups, L'Enseignement Math., 31 ( 1985), 137-145. Zbl0582.20033MR798909
  7. [C] CARRIÈRE Y. - Autour de la conjecture de L. Markus sur les variétés affines, Prépublication Institut Fourier 96, à paraître dans Inventiones, 1989. Zbl0682.53051MR979369
  8. [CD] CARRIÈRE Y., DAL' BO F.. - Généralisations du 1er théorème de Bieberbach sur les groupes cristallographiques, en préparation, 1988. Zbl0697.20037
  9. [CEG] CANARY R.D, EPSTEIN D.B.A., GREEN P. - Notes on the notes of Thurston, in Analytical and Geometric Aspects of Hyperbolic Space pp. 3-92, Warwick and Durham 1984, London Math. Soc. Lecture Notes Series 111, Cambridge University Press, Cambridge, 1987. Zbl0612.57009MR903850
  10. [Ch] CHERN S.S. - Pseudo-riemannian geometry and Gauss-Bonnet formula, Ann. Acad. Brazil, 95 ( 1963), 17-26. Zbl0113.37001MR155261
  11. [F1] FRIED D. - Closed similarity manifolds, Comment. Math. Helv., 55 ( 1980), 576-582. Zbl0455.57005MR604714
  12. [F2] FRIED D. - Distality, completeness and affine structures, J. Diff. Geom., 24 ( 1986), 265-273. Zbl0608.53026MR868973
  13. [F3] FRIED D. - Flat Spacetimes, J.Diff. Geom., 26 ( 1987), 385-396. Zbl0643.53047MR910014
  14. [F4] FRIED D. - Polynomials on affine manifolds,Trans. Amer. Math. Soc., 274 ( 1982), 709-719. Zbl0526.53040MR675076
  15. [FG] FRIED D., GOLDMAN W.. - Three-dimensional affine crystallographic groups, Adv. in Math., 47 ( 1983), 1-49. Zbl0571.57030MR689763
  16. [FGH] FRIED D., GOLDMAN W., KIRSCH M. . - Affine manifolds with nilpotent holonomy, Comment. Math. Helv., 56 ( 1981), 487-523. Zbl0516.57014MR656210
  17. [FS] FILLMORE J.P., SCHEUNEMAN J. - Fundamental groups of compact complete locally affine complex surfaces, Pacific J. Math., 44 ( 1973), 487-496. Zbl0259.32008MR328132
  18. [G1] GOLDMAN W.. - Two examples of affine manifolds, Pacific J. Math., 94 ( 1981), 327-330. Zbl0461.53041MR628585
  19. [G2] GOLDMAN W.. - Projective structures with fuchsian holonomy, J.Diff. Geom., 25 ( 1987), 297-326. Zbl0595.57012MR882826
  20. [GH1] GOLDMAN W., KIRSCH M. - The radiance obstruction and parallel forms on affine manifolds, Trans. Amer. Math. Soc., 286 ( 1984), 629-649. Zbl0561.57014MR760977
  21. [GH2] GOLDMAN W., KIRSCH M. - Affine manifolds and orbits of algebraic groups, Trans. Amer. Math. Soc., 295 ( 1986), 175-190. Zbl0591.57013MR831195
  22. [GK] GOLDMAN W., KAMISHIMA Y. - The fondamental group of a compact flat Lorentz space form is virtualiy polycyclic, J.Diff. Geom., 19 ( 1984), 233-240. Zbl0546.53039MR739789
  23. [Gr1] GROMOV M. - Almost flat manifolds, J. Diff. Geom., 13 ( 1978), 231-242. Zbl0432.53020MR540942
  24. [Gr2] GROMOV M. - Volume and bounded cohomology, Pub. MES, 56 ( 1982), 5-100. Zbl0516.53046MR686042
  25. [HT] HIRSCH M., THURSTON W. - Foliated bundles, invariant measures and flat manifolds, Annals of Math., 101 ( 1974), 369-390. Zbl0321.57015MR370615
  26. [Kob] KOBAYASHI S. - Projectively invariant distances for affine and projective structures, in Differential Geometry, pp. 127-152, Banach Center Publications, Polish Scientific Publishers,Warsaw, 2, 1984. Zbl0558.53019MR961077
  27. [Kos] KOSZUL J.L. - Variétés localement plates et convexité, Osaka J. Math., 2 ( 1965), 285-290. Zbl0173.50001MR196662
  28. [KS] KOSTANT K., SULLIVAN D. - The Euler characteristic of an affine space form is zero, Bull. Amer. Math. Soc, 81 ( 1975), 937-938. Zbl0313.57009MR375341
  29. [Kui] KUIPER N.H. - Sur les surfaces localement affines, Colloque de Géométrie différentielle, Strasbourg, pp.79-86, 1953. Zbl0053.13003MR60288
  30. [Marg] MARGULIS G.A. - Complete affine locally flat manifolds with a free fundamental group, J. Soviet Math., 36 ( 1987), 129-139. Zbl0611.57023
  31. [Mark] MARKUS L. - Cosmological models in differential geometry, mimeographed notes, University of Minnesota, 1962. 
  32. [Mars] MARSDEN J. - On completeness of honwgeneous pseudo-riemannian manifolds, Indina Math. J., 22 (1065&gt;66), 1973. Zbl0242.53026
  33. [M1] MILNOR J. - On the existence of a connection with curvature zero, Comment Math. Helv., 32 ( 1958), 215-223. Zbl0196.25101MR95518
  34. [M2] MlLNOR J. - On fondamental groups of complete affinely flat manifolds. Adv. in Math., 25 ( 1977). 178-187. Zbl0364.55001MR454886
  35. [NY] NAGANO T., YAGI K. - The affine structures on the real two-torus (I), Osaka J. Math., 11 ( 1974). 181-210. Zbl0285.53030MR377917
  36. [P] PELLETIER F. - Sur le théorème de Gauss-Bonnet pour les pseudo-métiques singulières, Séminaire Théorie Spectrale et Géométrie, Grenoble, pp. 99-105, 1986-87 Zbl1149.53314MR1046246
  37. [Sm1] SMILLIE J. - Affinely flat manifolds, Doctoral Dissertation, University of Chicago, 1977. 
  38. [Sm2] SMILLIE J. - An obstruction to the existence of affine structures, Invent. Math., 64 ( 1981), 411-415. Zbl0485.57015MR632981
  39. [Sm3] SMILLIE J. - Flat manifolds with non-zero Euler characteristics, Comment. Math. Helvetici, 52 ( 1977). 453-455. Zbl0357.53021MR461521
  40. [ST] SULLIVAN D., THURSTON W. - Manifolds with canonical coordinaîes : some examples, L'Enseignement Math., 29 ( 1983), 15-25. Zbl0529.53025MR702731
  41. [Sul] SULLIVAN D. - A generalization of Milnor's inequality concerning affine foliations and affine manifolds,Comm. Math. Helv., 51 ( 1976), 183-189. Zbl0335.57017MR418119
  42. [Suw] SUWA T. - Compact quotient spaces of C2 by affine transformation groups, J. Diff. Geom., 10 ( 1975), 239-252. Zbl0311.57025MR369745
  43. [T] THURSTON W. - The geometry and topology of 3-manifolds, chapter 3, Princeton University, 1978. 
  44. [Wan] WANG M. - The classification of flat compact space-forms with metric of signature (2,2), à paraître, 1988. Zbl0732.57017
  45. [Wol] WOLF J. - Spaces of constant curvature, Publish or Perish, Wilmington, 1984. Zbl0281.53034MR928600
  46. [Woo] WOOD J. - Bundles with totally disconnecîed structure group, Comment. Math. Helv.( 46 ( 1971), 257-273. Zbl0217.49202MR293655

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.