Majoration de multiplicité pour l'opérateur de Schrödinger

Colette Anné

Séminaire de théorie spectrale et géométrie (1989-1990)

  • Volume: 8, page 53-62
  • ISSN: 1624-5458

How to cite

top

Anné, Colette. "Majoration de multiplicité pour l'opérateur de Schrödinger." Séminaire de théorie spectrale et géométrie 8 (1989-1990): 53-62. <http://eudml.org/doc/114300>.

@article{Anné1989-1990,
author = {Anné, Colette},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {multiplicity for the Schrödinger operator},
language = {fre},
pages = {53-62},
publisher = {Institut Fourier},
title = {Majoration de multiplicité pour l'opérateur de Schrödinger},
url = {http://eudml.org/doc/114300},
volume = {8},
year = {1989-1990},
}

TY - JOUR
AU - Anné, Colette
TI - Majoration de multiplicité pour l'opérateur de Schrödinger
JO - Séminaire de théorie spectrale et géométrie
PY - 1989-1990
PB - Institut Fourier
VL - 8
SP - 53
EP - 62
LA - fre
KW - multiplicity for the Schrödinger operator
UR - http://eudml.org/doc/114300
ER -

References

top
  1. [A] ARONSZAJN N. - A unique continuation theorem for solutions of elliplic partial differential equations or inequalities of second order, J. Math. Pures Appl., 36 ( 1957), 235-249. Zbl0084.30402MR92067
  2. [An] ANNÉ C. - Bornes sur la multiplicité, à paraître, 1990. 
  3. [B] BESSON G.. - Sur la multiplicité de la première valeur propre des surfaces riemanniennes, Ann. Inst. Fourier (Grenoble), 30, 1 ( 1980), 109-128. Zbl0417.30033MR576075
  4. [C] CHENG S.Y. - Eigenfunctions and nodal sets, Comment. Math. Helv., 51 ( 1976), 43-55. Zbl0334.35022MR397805
  5. [CH] COURANT R., HILBERT G. - Methods of Mathematical Physics, Tome 1, New-York Interscience, 1953. Zbl0051.28802
  6. [CdV] COLIN DE VERDIÈRE Y. - Construction de Laplaciens dont une partie du spectre est donnée, Ann. Sci. École Norm. Sup., XX ( 1987), 599-615. Zbl0636.58036
  7. [N] NADIRASHVILI N.S. - Multiple eigenvalues of the Laplace Operator, Math. USSR Sbomik, 61,1 ( 1988), 225-238. Zbl0672.35049MR905007
  8. [P] PEETRE J.- A generalization of Courant's nodal domain theorem. Math. Scand., 5 ( 1957), 15-20. Zbl0077.30101MR92917
  9. [PS] POLYA G., SZEGÖ G. - Isoperimetric inequalities in mathematical physics, Ann. of Math. Studies, n°27, Princeton University Press, Princeton, 1951. Zbl0044.38301MR43486
  10. [W] WEINBERGER H.F. - An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal., 5 ( 1956), 613-623. Zbl0071.09902MR79286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.