Semiclassical eigenstates in a multidimensional well
Séminaire de théorie spectrale et géométrie (1992-1993)
- Volume: 11, page 147-155
- ISSN: 1624-5458
Access Full Article
topHow to cite
topPankratova, T. F.. "Semiclassical eigenstates in a multidimensional well." Séminaire de théorie spectrale et géométrie 11 (1992-1993): 147-155. <http://eudml.org/doc/114356>.
@article{Pankratova1992-1993,
author = {Pankratova, T. F.},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Gaussian-like asymptotics},
language = {eng},
pages = {147-155},
publisher = {Institut Fourier},
title = {Semiclassical eigenstates in a multidimensional well},
url = {http://eudml.org/doc/114356},
volume = {11},
year = {1992-1993},
}
TY - JOUR
AU - Pankratova, T. F.
TI - Semiclassical eigenstates in a multidimensional well
JO - Séminaire de théorie spectrale et géométrie
PY - 1992-1993
PB - Institut Fourier
VL - 11
SP - 147
EP - 155
LA - eng
KW - Gaussian-like asymptotics
UR - http://eudml.org/doc/114356
ER -
References
top- 1. M.V. Fedoryuk, Mat.Sb. 68(110) ( 1965), 81-110. (Russian)
- 2. A.G. Alenitsyn, Differentsial'nye Uravneniya 18 ( 1982), 1971-1975, English transl. in Differential Equations vol.18 ( 1982). (Russian) Zbl0522.34020MR681980
- 3. B. Simon, Semiclassical analysis of low lying eigenvalues, II-Tunneling, Ann. Math. 120 ( 1984), 89-118. Zbl0626.35070MR750717
- 4. G. Jona-Lasinio, F. Montinelli, E. Scoppola, New approach to the semiclassical limit of quantum mechanics, Comm. Math. Phys. 80 ( 1981), 223-254. Zbl0483.60094MR623159
- 5. E.M. Harrel, Double wells, Comm. Math. Phys. 75 ( 1980), 337-408. Zbl0445.35036MR581948
- 6. B. Helffer, J. Sjöstrand, Multiple welIs in the semiclassical limit, Math. Nachr. 124 ( 1985), 263-313. Zbl0597.35023MR827902
- 7. E. Delabaere and H. Dillinger, Contribution a la resurgence quantique, These de doctorat de math., L'Université de Nice Sophia-Antipolis.
- 8. T. F. Pankratova, Quasimodes and splitting of eigenvalues, Soviet Math. Dokl. 29 ( 1984), 597-601. Zbl0592.34012MR754093
- 9. Nguyên Hu'u Du'c and F. Pham, Germes de configurations legendriennes stables et fonctions d'Airy-Weber généralisées, Annales de l'institut Fourier, Grenoble 41 ( 1991), 905-936. Zbl0741.58048MR1150572
- 10. T. F. Pankratova, Olver's form asymptotics for the localised solution of the Schrödinger equation, Intenational Conference on DIFFERENTIAL EQUATIONS (Equa∂i/∂tff 91) Vol.2, Barcelona, Spain, World Scientific (26-31 August 1991), 810-813. Zbl0938.35522MR1242346
- 11. T. F. Pankratova, The eigenstates of the Schrödinger equation in a multidimensional well. Analytic phases for an analytic potential, Prépublication n°337 Mars 1993, L'Université de Nice Sophia-Antipolis.
- 12. T. F. Pankratova, Semiclassical eigenstates for a multidimensional well, Preprint DYSCO-023 May 1993, University of Milan. International institute for the Interdisciplinary Study of Dynamical Systems, Como, Italy . Zbl0937.35511
- 13. T. F. Pankratova, Semiclassical eigenstates for a 2-dimensional well. Second approximation for small quantum numbers., Matematics Preprint Series No. 136 June 1993, University of Barcelona.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.