Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon

Christophe Champetier

Séminaire de théorie spectrale et géométrie (1994-1995)

  • Volume: 13, page 23-36
  • ISSN: 1624-5458

How to cite

top

Champetier, Christophe. "Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 23-36. <http://eudml.org/doc/114379>.

@article{Champetier1994-1995,
author = {Champetier, Christophe},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {23-36},
publisher = {Institut Fourier},
title = {Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon},
url = {http://eudml.org/doc/114379},
volume = {13},
year = {1994-1995},
}

TY - JOUR
AU - Champetier, Christophe
TI - Structure quasi-conforme et dimension conforme d'après P. Pansu, M. Gromov et M. Bourdon
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 23
EP - 36
LA - fre
UR - http://eudml.org/doc/114379
ER -

References

top
  1. [1] PANSU P. _ Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sc. Fennicae, Ser. A 14 ( 1989), 177-212. Zbl0722.53028MR1024425
  2. [2] GROMOV M. _ Asymptotic invariants of infinite groups, Lond. Math. Soc. Lecture Notes 182, Cambridge, 1993. MR1253544
  3. [3] BOURDON M. _ Au bord de certains polyèdres hyperboliques, Ann. de l'Institut Fourier 45 ( 1995), 119-141. Zbl0820.20043MR1324127
  4. [4] LIOUVILLE J. _ Extension au cas des 3 dimensions de la question du tracé géographique, Application de l'analyse à la géométrie, G. Monge, Paris ( 1850), 609-616. 
  5. [5] NEVANUNNA R. _ On differentiable mappings, Analytic fonctions, ed. L. Ahlfors et al., Princeton University Press ( 1960), 3-9. Zbl0100.35701MR116280
  6. [6] HARTMAN P. _ On isometries and on a theorem of Liouville, Math. Z. 69 ( 1958), 202-210. Zbl0097.38203MR108809
  7. [7] MOSTOW D. _ Strong rigidity of locally symmetrie spaces, Annals of Math. Studies, Princeton University Press, 1973. Zbl0265.53039MR385004
  8. [8] AHLFORS L. _ On quasiconformal mappings, J. Analyse Math. 3 ( 1954), 1-58. Zbl0057.06506MR64875
  9. [9] LEHTO O., VIRTANEN K.I. _ Quasiconformal mappingin the plane, Springer-Verlag, Berlin, 1973. Zbl0267.30016MR344463
  10. [10] VÄISÄLA I. _ Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math. 229, 1971. 
  11. [11] VÄISÄLA J. _ On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. A. 1298 ( 1961), 1-36. Zbl0096.27506MR140685
  12. [12] PANSU P. _ Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 ( 1989), 1-60. Zbl0678.53042MR979599
  13. [13] GROMOV M., PANSU P. _ Rigidity of lattices, dans Geometrie Topology : recent developments, Lecture Notes in Math. 1504, Springer Verlag, Berlin, 1991. Zbl0786.22015MR1168043
  14. [14] HEINONEN J., KOSKELA P. _ Definitions of quasiconformality, Inv. Math. 120 ( 1995), 61-79. Zbl0832.30013MR1323982
  15. [15] MOSTOW D. _ Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 ( 1968), 53-104. Zbl0189.09402MR236383
  16. [16] MORI A. _ On quasiconformality and pseudo-analyticity, Trans. Am. Math. Soc. 84 ( 1957), 56-77. Zbl0077.07902MR83024
  17. [17] GEHRING F.W. _ Rings and quasiconformal mappings in space, Trans. Am. Math. Soc. 103 ( 1962), 353-393. Zbl0113.05805MR139735
  18. [18] PAULIN F. _ Un groupe hyperbolique est déterminé par son bord, à paraître dans J. of Lon. Math. Soc, 1995. Zbl0854.20050MR1395067
  19. [19] EBERLEIN P., O'NEILL B. _ Visibility manifolds, Pacific j. of Math. 46 ( 1973), 45-109. Zbl0264.53026
  20. [20] COORNAERT M., PAPADOPOULOS A. _ Symbolic dynamics and hyperbolic groups, Lecture Notes in Math. 1539, Springer-Verlag, Berlin, 1993. Zbl0783.58017
  21. [21] BOURDON M. _ Action quasi-convexe d'un groupe hyperbolique, Thèse de doctorat, Paris-Sud, 1993. 
  22. [22] GROMOV M. _ Hyperbolic groups, in Essays in group theory, MSRI publ. 8, Springer ( 1987), 75-263. Zbl0634.20015
  23. [23] GHYS E., DE LA HARPE P. eds. _ Sur les groupes hyperboliques d'après M. Gromov, Progress in Math. 83, Birkhäuser, 1990. Zbl0731.20025
  24. [24] GROMOV M. _ Lectures on manifolds of nonpositive curvature, Ballmann W., Gromov M., Schroeder V. eds., Progress in Math. 61, Birkhäuser, 1985. Zbl0591.53001MR823981
  25. [25] GEHRING E., PALKA B. _ Quasiconformally homogeneous domaines, J. Analyse Math. 30 ( 1976), 172-199. Zbl0349.30019MR437753
  26. [26] SULLIVAN D. _ On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Riemann surfaces and related topics, proceedings of the 1978 Stong Brook conference, I. Kaa et B. Maskit ed.t Ann. of Math. Studies 97, Princeton University Press ( 1981), 465-496. Zbl0567.58015MR624833
  27. [27] TUKIA P. _ On two dimensional quasiconformal groups, Ann. Acad. Sci. Fenn., Ser.A. 5 ( 1980), 73-78. Zbl0411.30038MR595178
  28. [28] LEHTO O. _ Quasiconformal homeomorphisms and Beltrami equations, in Discrete groups and automorphic functions, W. J. Harveyed., Academie Press, 1977,121-142. MR486502
  29. [29] TUKIA P. _ A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn., Ser. A 6 ( 1981), 149-160. Zbl0443.30026MR639972
  30. [30] MARTIN G. _ Discrete quasiconformal groups that are not quasiconformal conjugates of Möbius groups, Ann. Acad. Sci. Fenn., Ser. All ( 1986), 179-202. Zbl0635.30021MR853955
  31. [31] GROMOV. _ Infinite groups as geometrie objects, Proceedings of the International Congress of Mathe-maticians, Varsovia ( 1983), 385-392. Zbl0599.20041MR804694
  32. [32] BALLMAN W., BRIN M. _ Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 ( 1994), 165-191. Zbl0832.57002MR1279883
  33. [33] BENAKLI N. _ Polyèdres hyperboliques, passage du local au global, Thèse de doctorat, Paris-Sud, 1992. 
  34. [34] HAGLUND F. _ Polyèdres de Gromov, Thèse de doctorat, Lyon 1, 1992. MR1133493
  35. [35] PAULIN F. _ de la géométrie et la dynamique des groupes discrets, Thèse d'habilitation, Lyon, 1995. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.