Quantum ergodicity of C*-dynamical systems

Steven Zelditch

Séminaire de théorie spectrale et géométrie (1994-1995)

  • Volume: 13, page 81-95
  • ISSN: 1624-5458

How to cite

top

Zelditch, Steven. "Quantum ergodicity of C*-dynamical systems." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 81-95. <http://eudml.org/doc/114384>.

@article{Zelditch1994-1995,
author = {Zelditch, Steven},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {operator algebras; pseudodifferential operators; Fourier integral operators; Toeplitz operators; quantized contact transformations; quantized symplectic torus automorphisms; semi-classical quantum ergodicity; -dynamical systems; quantum ergodicity},
language = {eng},
pages = {81-95},
publisher = {Institut Fourier},
title = {Quantum ergodicity of C*-dynamical systems},
url = {http://eudml.org/doc/114384},
volume = {13},
year = {1994-1995},
}

TY - JOUR
AU - Zelditch, Steven
TI - Quantum ergodicity of C*-dynamical systems
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 81
EP - 95
LA - eng
KW - operator algebras; pseudodifferential operators; Fourier integral operators; Toeplitz operators; quantized contact transformations; quantized symplectic torus automorphisms; semi-classical quantum ergodicity; -dynamical systems; quantum ergodicity
UR - http://eudml.org/doc/114384
ER -

References

top
  1. [A.dP.W] S. AXELROD, S. DELLA PIETRA and E. WITTEN. _ Geometric quantization of the Chern-Simons gauge theory, J.D.G. 33 ( 1991), 787-902. Zbl0697.53061MR1100212
  2. [Bai] W. BAILY . _ Classical theory of θ-fonctions, in AMS Proc.Symp.Pure. Math. IX AMS ( 1966), 306-311. Zbl0178.55002MR208016
  3. [Be] J. BELLISSARD. _ Non-commutative method in semi-classical analysis, in Transition to Chaos in Classical and Quantum Mechanics, éd. S.Graffi, Lecture Notes in Math. 1589, Springer-Verlag, N.Y., 1994. Zbl0818.46072
  4. [B] F. BENATTI. _ Deterministic Chaos in Infinite Quantum Systems, Trieste, Notes in Physics, Springer-Verlag, New York, 1993. MR1261185
  5. [B.N.S] F. BENATTI, H. NARNHOFER and G.L. SEWELL . _ A non-commutative version of the Arnold cat map, Lett. Math.Phys. 21 ( 1991), 157-172. Zbl0722.46033MR1093527
  6. [B.H] M.V. BERRY and J.H. HANNAY. _ Quantization oflinearmaps on a torus, Physica Dl ( 1980), 267. MR602111
  7. [dB.B] S. DE BIEVRE and A. BOUZOUINA. _ Equipartition of the eigenfùnctions of quantized ergodic maps on the torus, to appear in Comm. Math. Phys. Zbl0876.58041MR1387942
  8. [B] L. BOUTET DE MONVEL. _ Toeplitz operators, an asymptotic quantization of symplectic cones, in: Stochastic Processes and Their Applications, S. Albeverio (Ed.), Kluwer Acad. Pub., Netherlands, 1990. Zbl0735.47014MR1086184
  9. [B.G] L. BOUTET DE MONVEL and V. GUILLEMIN. _ The Spectral Theory of Toeplitz Operators, Ann. Math. Studies 99, Princeton U. Press, 1981. Zbl0469.47021MR620794
  10. [B.S] L. BOUTET DE MONVEL and J. SJÖSTRAND. _ Sur la singularité des noyaux de Bergmann et de Szegö, Asterisque 34-35 ( 1976), 123-164. Zbl0344.32010MR590106
  11. [B.R] O. BRATTELI and D.W. ROBINSON. _ Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlay, 1979. Zbl0421.46048MR611508
  12. [Co] A. CONNES . _ Non commutative Geometry, Acad. Press, N.Y., 1994. 
  13. [dE.G.I] M. D'EGLI ESPOSTI, S. GRAFFI and S. ISOLA. _ Stochastic properties of the quantum Arnold cat in the classical limit, Comm.Math.Phys. 167 ( 1995), 471-509. MR1316757
  14. [D] R.G. DOUGLAS . _ C * - Algebra Extensions and K-Homology, Ann.Math.Studies 95, Princeton U.Press, Princeton, 1980. Zbl0458.46049MR571362
  15. [F] G. FOLLAND. _ Harmonic Analysis in Phase Space, Ann. Math. Studies, 122, Princeton U. Press, 1989. Zbl0682.43001MR983366
  16. [ES] G. FOLLAND and E. STEIN. _ , Comm. P.A.M. 27 ( 1974), 429-522. Zbl0293.35012MR367477
  17. [G.S] A. GRIGIS and J. SJOSTRAND. _ Microlocal Analysis of Spectral Problems, Cambridge Univ. Press, 1994. Zbl0804.35001MR1269107
  18. [G] V. GUILLEMIN. _ Residue traces for certain algebras of Fourier Integral operators, J.Fun.Anal. 115 ( 1993),381-417. Zbl0791.35162MR1234397
  19. [G.1] V. GUILLEMIN. _ Some classical theorems in spectral theory revisited, in Seminar on Singularises, Ann. Math. Studies, 91, Princeton U. Press, 1979. Zbl0452.35093MR547021
  20. [GS] V. GUILLEMIN and S. STERNBERG. _ Some problems in integral geometry and some related problems in microlocal analysis, Amer. J. Math. 101 ( 1979), 915-955. Zbl0446.58019MR536046
  21. [H] W. HELTON . _ An operatoralgebra approach to partial diffevential equations, propagation of singularities and spectral theory, Indiana Univ. Math. Journal, 1976. Zbl0373.35060
  22. [HoIV] L. HÖRMANDER. _ The Analysis of Linear Partial Differential Operators IV, Grundlehren 275, Springer-Verlag, 1985. Zbl0612.35001MR781537
  23. [Herm] C. HERMITE. _ Sur quelques formules relatives a la transformation des fonctions elliptiques, Journal de Liouville III ( 1858), 26. 
  24. [K] V. KAC. _ Infinite Dimensional LieAlgebras, 3rd ed. Cambridge: Cambridge Univ.Press, 1990. Zbl0716.17022MR1104219
  25. [K.P] V. KAC and D.H. PETERSON. _ Infinite dimensional Lie algebras, theta fonctions and modular forms, Adv in Math. 53 ( 1984), 125-264. Zbl0584.17007MR750341
  26. [Ke] J. KEATING. _ The cat maps: quantum mechanics and classical motion, Nonlinearity 4 ( 1991), 309-341. Zbl0726.58037MR1107009
  27. [R] D. RUELLE . _ Statistical Mechanics, Benjamin, 1969. Zbl0177.57301MR289084
  28. [S] P. SARNAK. _ Arithmetic quantum chaos, Tel Aviv lectures, 1993. Zbl0831.58045
  29. [Sn] A.I. SNIRELMAN. _ Ergodic properties of eigenfunctions, Usp. Math. Nauk. 29 ( 1974), 181-182. 
  30. [St] E. STEIN . _ Harmonic Analysis, Princeton: Princeton Univ.Press, 1993. Zbl0821.42001
  31. [Su] T. SUNADA. _ Quanrum ergodicity, (preprint 1994). 
  32. [Tr] F. TREVES. _ Introduction to Pseudodifferential and Fourier Integral Operators II, Plenum, New York, 1980. Zbl0453.47027MR597145
  33. [W] P. WALTERS. _ An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer-Verlag, NY, 1982. Zbl0475.28009MR648108
  34. [Wei] A. WEINSTEIN. _ Fourier Intégral Operators, quantization, and the spectrum of a Riemannian manifold, Colloques Internationaux C.N.R.S. 237, Geometrie Symplectique et Physique, 1976. 
  35. [We] J. WEITSMAN. _ Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one, Comm. Math. Phys. 137 ( 1991), 175-190. Zbl0717.53065MR1099261
  36. [Z.1] S. ZELDITCH. _ Quantum ergodicity of C* - dynamical systems, (Comm.Math.Phys., to appear). Zbl0856.58019MR1384146
  37. [Z.2] S. ZELDITCH. _ Index and dynamics of quantized contact transformations, (preprint 1995). MR1437187
  38. [Z.3] S. ZELDITCH. _ Quantum Mixing, (J. Fun. Anal., to appear). Zbl0858.58049MR1404574
  39. [Z.4] S. ZELDITCH. _ Quantum transition amplitudes for ergodic and for completely integrable Systems, J. Fun. Anal. 94 ( 1990), 415-436. Zbl0721.58051MR1081652
  40. [Z.Z] S. ZELDITCH, M. ZWORSKI. _ Quantum ergodicity and ergodic billiards, (Comm. Math. Phys., to appear). Zbl0840.58048MR1372814

NotesEmbed ?

top

You must be logged in to post comments.