Théorèmes de masse positive

Marc Herzlich

Séminaire de théorie spectrale et géométrie (1997-1998)

  • Volume: 16, page 107-126
  • ISSN: 1624-5458

How to cite

top

Herzlich, Marc. "Théorèmes de masse positive." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 107-126. <http://eudml.org/doc/114418>.

@article{Herzlich1997-1998,
author = {Herzlich, Marc},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Yamabe problem; scalar curvature; positive mass theorem},
language = {fre},
pages = {107-126},
publisher = {Institut Fourier},
title = {Théorèmes de masse positive},
url = {http://eudml.org/doc/114418},
volume = {16},
year = {1997-1998},
}

TY - JOUR
AU - Herzlich, Marc
TI - Théorèmes de masse positive
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 107
EP - 126
LA - fre
KW - Yamabe problem; scalar curvature; positive mass theorem
UR - http://eudml.org/doc/114418
ER -

References

top
  1. [1] L. ANDERSSON and M. DAHL, Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann. Glob. Anal. Geom. 16 ( 1998), 1-27. Zbl0946.53021MR1616570
  2. [2] R. ARNOWITT, S. DESER and C.W. MISNER, Coordinate invariance and energy expressions in General Relativity, Phys. Rev. 122 ( 1961), 997-1006. Zbl0094.23003MR127946
  3. [3] T. AUBIN, Équations différentielles non -linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 ( 1976), 269-296. Zbl0336.53033MR431287
  4. [4] P. AVILES and R. MCOWEN, Conformat deformation of complete manifolds with negative curvature, J. Diff. Geom. 21 ( 1985), 269-281. Zbl0588.53028MR816672
  5. [5] P. AVILES and R. MCOWEN, Conformal deformation to constant negative scalar curvature on noncompact riemannian manifolds, J. Diff. Geom. 27 ( 1988), 225-239. Zbl0648.53021MR925121
  6. [6] A. BAHRI and H. BREZIS, Équations elliptiques non-linéaires sur des variétés avec exposant de Sobolev critique, C.R. Acad. Sci. Paris 307 ( 1988), 573-576. Zbl0694.35059MR967364
  7. [7] C. BANDLE, Isoperimetric inequalities, Pitman, London, 1980. Zbl0454.52005
  8. [8] S. BANDO, A. KASUE, and H. NAKAJIMA, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent, math. 97 ( 1989), 313-349. Zbl0682.53045MR1001844
  9. [9] C. BÄR, Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 ( 1992), 39-46. Zbl0741.58046MR1162671
  10. [10] R. BARTNIK, The mass of an asymptotically flat manifold, Commun. Pure. Appl. Math. 39 ( 1986), 661-693. Zbl0598.53045MR849427
  11. [11] R. BARTNIK, New definition of quasi-local mass, Phys. Rev. Lett. 62 ( 1989), 2346-2348. MR996396
  12. [12] O. BIQUARD, Métriques d'Einstein asymptotiquemen t symétriques, École Polytechnique ( 1997), preprint. MR1468928
  13. [13] O. BIQUARD, Einstein deformations of hyperbolic metrics, École Polytechnique ( 1998), preprint. Zbl1001.53028MR1798612
  14. [14] J.-P. BOURGUIGNON, Stabilité par déformation non-linéaire de la métrique de Minkowski, Sém. Bourbaki n° 740, Astérisque, vol. 201-203, Soc. math. France, 1991. Zbl0754.53060MR1157847
  15. [15] H. BRAY, Ph. D thesis, Stanford University, 1997. 
  16. [16] M. DAHL, The positive mass argument for ALE and ALH manifolds, Mathematics of Gravitation, Banach Center Publ., vol. 41, 1997, pp. 133-142. Zbl0890.53065MR1466513
  17. [17] E. DELAY, Analyse précisée d'équations semi- linéaires elliptiques sur l'espace hyperbolique et application à la courbure scalaire conforme, Bull. Soc. Math. Fr. 125 ( 1997), 345-381. Zbl0939.53026MR1605461
  18. [18] V. DENISOV and O. SOLOVEV, The energy determined in General Relativity on the basis of the traditional Hamiltonian approach does not have physical meaning, Theor. Math. Phys. 56 ( 1983), 832-838, english translation. Zbl0541.53024
  19. [19] J. ESCOBAR, The geometry of the first non-zero Stekloff eigenvalue, J. Funct. Anal. 150 ( 1997), 544-556. Zbl0888.58066MR1479552
  20. [20] G. GALLOWAY, private communication. 
  21. [21] R. GEROCH, Energy extraction, Ann. N. Y. Acad. Sci. 224 ( 1973), 108-117. Zbl0942.53509
  22. [22] R. GEROCH, General relativity, in Differential geometry, Proc. Symp. Pure Math., vol. 27, Amer. Math. Soc, 1975. Zbl0307.53038MR378703
  23. [23] C. R. GRAHAM and J. LEE, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 ( 1991), 186-225. Zbl0765.53034MR1112625
  24. [24] R. GREENE, P. PETERSEN and S. ZHU, Riemannian manifolds of faster- than-quadratic curvature decay, Int. Math. Res. Notices 9 ( 1994), 363-377. Zbl0833.53037MR1301436
  25. [25] L. HABERMANN and J. JOST, Green functions and conformal geometry, I and II MPI Leipzig ( 1997), preprint. MR1806066
  26. [26] S. HAWKING, Gravitational radiation in an expanding universe, J. Math. Phys. 9 ( 1968), 598-604. 
  27. [27] S.W. HAWKING and G.F.R. ELLIS, The large-scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. Zbl0265.53054MR424186
  28. [28] M. HERZLICH, Minimal surfaces, the Dirac operator and the Penrose inequality. Actes de la table ronde A.L. Besse de géométrie pseudoriemannienne, Nancy, 1-6 Juin 1998, to appear. MR1987634
  29. [29] M. HERZLICH, Métriques privilégiées dans la classe conforme d'une variété asymptotiquement plate, et applications, C.R. Acad. Sci. Paris 323 ( 1996), 287-292. Zbl0861.53037MR1404775
  30. [30] M. HERZLICH, A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds, Commun. Math. Phys. 188 ( 1997), 121-133. Zbl0886.53032MR1471334
  31. [31] M. HERZLICH, Scalar curvature and rigidity for odd-dimensional complex hyperbolic spaces, Math. Annalen ( 1998), to appear. Zbl0946.53022MR1660251
  32. [32] O. HIJAZI, Première valeur propre de l'opérateur de Dirac et nombre de Yamabe, C.R. Acad. Sci. Paris 313 ( 1991), 865-868. Zbl0738.53030MR1138566
  33. [33] G. HUISKEN and T. ILMANEN, The Riemannian Penrose inequality, Int. Math. Res. Not. 20 ( 1997), 1045-1058. Zbl0905.53043MR1486695
  34. [34] P.S. JANG and R. WALD, The positive energy conjecture and the cosmic censor hypothesis, J. Math. Phys. 18 ( 1977), 41-44. MR523907
  35. [35] A. KASUE, A compactification of a manifold with asymptotically nonnegative curvature, Ann. Scient. Ec. Norm. Sup. Paris 21 ( 1988), 593-622. Zbl0662.53032MR982335
  36. [36] J. KAZDAN, Positive energy in general relativity, Sém. Bourbaki n° 593, Astérisque, vol. 92-93, Soc. math. France, 1982. Zbl0496.53043MR689537
  37. [37] P.B. KRONHEIMER, A Torelli type theorem for gravitational instantons, J. Diff. Geom. 29 ( 1989), 685-697. Zbl0671.53046MR992335
  38. [38] J. LEE and T.H. PARKER, The Yamabe problem, Bull. Amer. Math. Soc. 17 ( 1987), 37-91. Zbl0633.53062MR888880
  39. [39] M.C. LEUNG, Pinching theorem on asymptotically hyperbolic spaces, Int. J. Math. 5 ( 1993), 841-857. Zbl0810.53032MR1245353
  40. [40] A. LICHNEROWICZ, Spineurs harmoniques, C.R. Acad. Sci. Paris 257 ( 1963), 7-9. Zbl0136.18401MR156292
  41. [41] E. MALEC and K. ROSZKOWSKI, Comment on Herzlich's proof of the Penrose inequality, Jagiellon Univ, Krakow ( 1998), preprint, g r - qc 9806035. Zbl0988.83037MR1652117
  42. [42] M. MIN-OO, Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann. 285 ( 1989), 527-539. Zbl0686.53038MR1027758
  43. [43] R. PENROSE, Naked singularities, Ann. N. Y.Acad. Sci. 224 ( 1973), 125-134. Zbl0925.53023
  44. [44] OO. REULA and K.P. TOD, Positivity of the Bondi energy, J. Math. Phys. 25 ( 1984), 1004-1008. MR739255
  45. [45] R. SCHOEN, Conformal deformation of a Riemannian manifold to constant scalar curvature, J. Diff. Geom 20 ( 1984), 479-495. Zbl0576.53028MR788292
  46. [46] R. SCHOEN, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations (M. Giaquinta, ed.), Lect. Notes in Math., vol. 1365, Springer, 1989, pp. 121-154. Zbl0702.49038MR994021
  47. [47] R. SCHOEN and S. T. YAU, On the proof of the positive mass conjecture in General Relativity, Commun. Math. Phys 65 ( 1979), 45-76. Zbl0405.53045MR526976
  48. [48] R. SCHOEN and S. T. YAU, On the structure of manifolds with positive scalar curvature, Manuscripta math. 28 ( 1979), 159-183. Zbl0423.53032MR535700
  49. [49] R. SCHOEN and S. T. YAU, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 ( 1988), 47-71. Zbl0658.53038MR931204
  50. [50] K. S. THORNE, Magic without magic, Freeman, San Francisco, 1972. 
  51. [51] P. TOD, private communication. 
  52. [52] N. TRUDINGER, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 ( 1968), 265-274. Zbl0159.23801MR240748
  53. [53] S. UNNEBRINK, Asymptotically flat four-manifolds, Diff. Geom. Appl. 6 ( 1996), 271-274. Zbl0856.53031MR1408311
  54. [54] E. WITTEN, A new proof of the positive energy theorem, Commun. Math. Phys. 80 ( 1981), 381-402. Zbl1051.83532MR626707
  55. [55] H. YAMABE, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 ( 1960), 21-37. Zbl0096.37201MR125546

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.