Gluing principle for the constraint equations in general relativity

Julien Cortier[1]

  • [1] Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France

Séminaire de théorie spectrale et géométrie (2011-2012)

  • Volume: 30, page 21-45
  • ISSN: 1624-5458

Abstract

top
The “gluing” method to find solutions to the relativistic constraint equations is reviewed. In particular, we describe the Corvino-Schoen method to construct families of solutions on a non-compact manifold with prescribed geometry on an asymptotic end, with emphasis on the “non-localized” gluing. We then provide a list of results obtained by various authors using such techniques, including the question of gluing Riemannian metrics while preserving their (constant) scalar curvature. We eventually give some applications in geometric analysis and in general relativity.

How to cite

top

Cortier, Julien. "Principe de recollement des équations des contraintes en relativité générale." Séminaire de théorie spectrale et géométrie 30 (2011-2012): 21-45. <http://eudml.org/doc/275756>.

@article{Cortier2011-2012,
abstract = {La méthode de «  recollement  » permettant de trouver des solutions des équations des contraintes relativistes est décrite. En particulier, on expose la méthode de Corvino-Schoen pour construire des familles de solutions sur une variété non-compacte avec géométrie prescrite sur un bout asymptotique, en insistant sur le recollement «  non-localisé  ». Une liste de résultats obtenus par divers auteurs à partir de telles techniques est alors fournie, incluant la question du recollement de métriques riemanniennes en préservant leur courbure scalaire (constante). On donne enfin certaines applications en analyse géométrique et en relativité générale.},
affiliation = {Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France},
author = {Cortier, Julien},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {general relativity; Cauchy formulation; constraint equations; gluing},
language = {fre},
pages = {21-45},
publisher = {Institut Fourier},
title = {Principe de recollement des équations des contraintes en relativité générale},
url = {http://eudml.org/doc/275756},
volume = {30},
year = {2011-2012},
}

TY - JOUR
AU - Cortier, Julien
TI - Principe de recollement des équations des contraintes en relativité générale
JO - Séminaire de théorie spectrale et géométrie
PY - 2011-2012
PB - Institut Fourier
VL - 30
SP - 21
EP - 45
AB - La méthode de «  recollement  » permettant de trouver des solutions des équations des contraintes relativistes est décrite. En particulier, on expose la méthode de Corvino-Schoen pour construire des familles de solutions sur une variété non-compacte avec géométrie prescrite sur un bout asymptotique, en insistant sur le recollement «  non-localisé  ». Une liste de résultats obtenus par divers auteurs à partir de telles techniques est alors fournie, incluant la question du recollement de métriques riemanniennes en préservant leur courbure scalaire (constante). On donne enfin certaines applications en analyse géométrique et en relativité générale.
LA - fre
KW - general relativity; Cauchy formulation; constraint equations; gluing
UR - http://eudml.org/doc/275756
ER -

References

top
  1. M.T. Anderson, M.A. Khuri, On the Bartnik extension problem for the static vacuum Einstein equations, Class. Quantum Grav. 30 (2013) Zbl1271.83013MR3064190
  2. R. Arnowitt, S. Deser, C. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961), 997-1006 Zbl0094.23003MR127946
  3. R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 39 (1986), 661-693 Zbl0598.53045MR849427
  4. R. Bartnik, J. Isenberg, The constraint equations, The Einstein equations and the large scale behavior of gravitational fields : 50 years of the Cauchy problem in general relativity (2004), 1-34, Birkhauser Basel, Switzerland Zbl1073.83009MR2098912
  5. R. Beig, P.T. Chruściel, Killing Initial Data, Class. Quantum Grav. 14 (1997), A83-A92 Zbl0871.53063MR1691888
  6. R. Beig, P.T. Chruściel, R.M. Schoen, KIDs are non-generic, Ann. H. Poincaré 6 (2005), 155-194 Zbl1145.83306MR2121280
  7. Y. Choquet-Bruhat, R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys. 14 (1969), 329-335 Zbl0182.59901MR250640
  8. P.T. Chruściel, On the invariant mass conjecture in general relativity, Commun. Math. Phys. 120 (1988), 233-248 Zbl0661.53060MR973533
  9. P.T. Chruściel, J. Corvino, J. Isenberg, Construction of N-Body Initial Data Sets in General Relativity, Commun. Math. Phys. 304 (2011), 637-647 Zbl1216.83010MR2794541
  10. P.T. Chruściel, E. Delay, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. Fr. (2003) Zbl1058.83007MR2031583
  11. P.T. Chruściel, E. Delay, Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature, Comm. Anal. Geom. 17 (2009), 343-381 Zbl1187.53075MR2520913
  12. P.T. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math 212 (2003), 231-264 Zbl1056.53025MR2038048
  13. P.T. Chruściel, J. Isenberg, D. Pollack, Initial data engineering, Commun. Math. Phys. 257 (2005), 29-42 Zbl1080.83002MR2163567
  14. P.T. Chruściel, J. Jezierski, S. Leski, The Trautman-Bondi mass of hyperboloidal initial data sets, Adv. Theor. Math. Phys. 8 (2004), 83-139 Zbl1086.81066MR2086675
  15. P.T. Chruściel, F. Pacard, D. Pollack, Singular Yamabe metrics and initial data with exactly Kottler-Schwarzschild-de Sitter ends II, Math. Res. Lett. 16 (2009), 157-164 Zbl1170.83004MR2480569
  16. P.T. Chruściel, D. Pollack, Singular Yamabe metrics and initial data with exactly Kottler-Schwarzschild-de Sitter ends, Ann. H. Poincaré 9 (2008), 639-654 Zbl1144.83004MR2413198
  17. J. Cortier, A family of asymptotically hyperbolic manifolds with arbitrary energy-momentum vectors, J. Math. Phys. 53 (2012) Zbl1278.83009MR3050585
  18. J. Cortier, Gluing construction of initial data with Kerr-de Sitter ends, Ann. H. Poincaré 14 (2013), 1109-1134 Zbl1272.83012MR3070748
  19. J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), 137-189 Zbl1031.53064MR1794269
  20. J. Corvino, M. Eichmair, P. Miao, Deformation of scalar curvature and volume, Math. Ann. (2013) Zbl1278.53041MR3096517
  21. J. Corvino, R.M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, J. Diff. Geom. 73 (2006), 185-217 Zbl1122.58016MR2225517
  22. E. Delay, Localized gluing of Riemannian metrics in interpolating their scalar curvature, Diff. Geom. Appl. 29 (2011), 433-439 Zbl1219.53041MR2795849
  23. E. Delay, Smooth compactly supported solutions of some underdetermined elliptic PDE, with gluing applications, Comm. PDE 37 (2012), 1689-1716 Zbl1268.58018MR2971203
  24. E. Delay, L. Mazzieri, Refined gluing for vacuum Einstein constraint equations, (2010) Zbl1316.53043
  25. Y. Fourès-Bruhat, Théorèmes d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math 88 (1952), 141-225 Zbl0049.19201MR53338
  26. M. Herzlich, Théorèmes de masse positive, Séminaire de Théorie Spectrale et Géométrie 16 (1998), 107-126 Zbl0949.53002MR1626060
  27. E. Humbert, Relativité générale (d’après M. Vaugon) et quelques problèmes mathématiques qui en sont issus, (2010) 
  28. J. Isenberg, D. Maxwell, D. Pollack, A gluing construction for non-vacuum solutions of the Einstein contraint equations, Adv. Theor. Math. Phys. 9 (2005), 129-172 Zbl1101.83005MR2193370
  29. J.L. Jauregui, Fill-ins of nonnegative scalar curvature, static metrics, and quasi-local mass, Pacific. J. Math. 261 (2013), 417-444 Zbl1268.53043MR3037574
  30. J.L. Kazdan, Positive energy in general relativity, Séminaire N. Bourbaki 120 (1982), 315-330 Zbl0496.53043MR689537
  31. J. M. Lee, T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91 Zbl0633.53062MR888880
  32. H. Lindblad, I. Rodnianski, Global Existence for the Einstein Vacuum Equations in Wave Coordinates, Comm. Math. Phys. 256 (2005), 43-110 Zbl1081.83003MR2134337
  33. H. Lindblad, I. Rodnianski, The global stability of Minkowski space-time in harmonic gauge, Ann. Math. 171 (2010), 1401-1477 Zbl1192.53066MR2680391
  34. D. Maerten, Killing initial data revisited, J. Math. Phys. 45 (2004), 2594-2599 Zbl1071.83005MR2067575
  35. L. Mazzieri, Generalized gluing for Einstein constraint equations, Calc. Var. 34 (2009), 453-473 MR2476420
  36. B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (2011) Zbl1317.83030MR2839077
  37. V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations. I, J. Math. Phys. 16 (1975), 493-498 Zbl0314.53035MR363398
  38. V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations. II, J. Math. Phys. 17 (1976), 1893-1902 MR416469
  39. R.M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations (Montecatini Terme, 1987) 1365 (1989), 120-154, Springer Berlin / Heidelberg Zbl0702.49038MR994021
  40. R.M. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979), 45-76 Zbl0405.53045MR526976
  41. R.M. Schoen, S.T. Yau, Proof of the positive mass theorem II, Commun. Math. Phys. 79 (1981), 231-260 Zbl0494.53028MR612249
  42. E. Witten, A simple proof of the positive energy theorem, Commun. Math. Phys. 80 (1981), 381-402 Zbl1051.83532MR626707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.