Gluing principle for the constraint equations in general relativity
- [1] Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France
Séminaire de théorie spectrale et géométrie (2011-2012)
- Volume: 30, page 21-45
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.T. Anderson, M.A. Khuri, On the Bartnik extension problem for the static vacuum Einstein equations, Class. Quantum Grav. 30 (2013) Zbl1271.83013MR3064190
- R. Arnowitt, S. Deser, C. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961), 997-1006 Zbl0094.23003MR127946
- R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 39 (1986), 661-693 Zbl0598.53045MR849427
- R. Bartnik, J. Isenberg, The constraint equations, The Einstein equations and the large scale behavior of gravitational fields : 50 years of the Cauchy problem in general relativity (2004), 1-34, Birkhauser Basel, Switzerland Zbl1073.83009MR2098912
- R. Beig, P.T. Chruściel, Killing Initial Data, Class. Quantum Grav. 14 (1997), A83-A92 Zbl0871.53063MR1691888
- R. Beig, P.T. Chruściel, R.M. Schoen, KIDs are non-generic, Ann. H. Poincaré 6 (2005), 155-194 Zbl1145.83306MR2121280
- Y. Choquet-Bruhat, R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys. 14 (1969), 329-335 Zbl0182.59901MR250640
- P.T. Chruściel, On the invariant mass conjecture in general relativity, Commun. Math. Phys. 120 (1988), 233-248 Zbl0661.53060MR973533
- P.T. Chruściel, J. Corvino, J. Isenberg, Construction of N-Body Initial Data Sets in General Relativity, Commun. Math. Phys. 304 (2011), 637-647 Zbl1216.83010MR2794541
- P.T. Chruściel, E. Delay, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. Fr. (2003) Zbl1058.83007MR2031583
- P.T. Chruściel, E. Delay, Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature, Comm. Anal. Geom. 17 (2009), 343-381 Zbl1187.53075MR2520913
- P.T. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math 212 (2003), 231-264 Zbl1056.53025MR2038048
- P.T. Chruściel, J. Isenberg, D. Pollack, Initial data engineering, Commun. Math. Phys. 257 (2005), 29-42 Zbl1080.83002MR2163567
- P.T. Chruściel, J. Jezierski, S. Leski, The Trautman-Bondi mass of hyperboloidal initial data sets, Adv. Theor. Math. Phys. 8 (2004), 83-139 Zbl1086.81066MR2086675
- P.T. Chruściel, F. Pacard, D. Pollack, Singular Yamabe metrics and initial data with exactly Kottler-Schwarzschild-de Sitter ends II, Math. Res. Lett. 16 (2009), 157-164 Zbl1170.83004MR2480569
- P.T. Chruściel, D. Pollack, Singular Yamabe metrics and initial data with exactly Kottler-Schwarzschild-de Sitter ends, Ann. H. Poincaré 9 (2008), 639-654 Zbl1144.83004MR2413198
- J. Cortier, A family of asymptotically hyperbolic manifolds with arbitrary energy-momentum vectors, J. Math. Phys. 53 (2012) Zbl1278.83009MR3050585
- J. Cortier, Gluing construction of initial data with Kerr-de Sitter ends, Ann. H. Poincaré 14 (2013), 1109-1134 Zbl1272.83012MR3070748
- J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), 137-189 Zbl1031.53064MR1794269
- J. Corvino, M. Eichmair, P. Miao, Deformation of scalar curvature and volume, Math. Ann. (2013) Zbl1278.53041MR3096517
- J. Corvino, R.M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, J. Diff. Geom. 73 (2006), 185-217 Zbl1122.58016MR2225517
- E. Delay, Localized gluing of Riemannian metrics in interpolating their scalar curvature, Diff. Geom. Appl. 29 (2011), 433-439 Zbl1219.53041MR2795849
- E. Delay, Smooth compactly supported solutions of some underdetermined elliptic PDE, with gluing applications, Comm. PDE 37 (2012), 1689-1716 Zbl1268.58018MR2971203
- E. Delay, L. Mazzieri, Refined gluing for vacuum Einstein constraint equations, (2010) Zbl1316.53043
- Y. Fourès-Bruhat, Théorèmes d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math 88 (1952), 141-225 Zbl0049.19201MR53338
- M. Herzlich, Théorèmes de masse positive, Séminaire de Théorie Spectrale et Géométrie 16 (1998), 107-126 Zbl0949.53002MR1626060
- E. Humbert, Relativité générale (d’après M. Vaugon) et quelques problèmes mathématiques qui en sont issus, (2010)
- J. Isenberg, D. Maxwell, D. Pollack, A gluing construction for non-vacuum solutions of the Einstein contraint equations, Adv. Theor. Math. Phys. 9 (2005), 129-172 Zbl1101.83005MR2193370
- J.L. Jauregui, Fill-ins of nonnegative scalar curvature, static metrics, and quasi-local mass, Pacific. J. Math. 261 (2013), 417-444 Zbl1268.53043MR3037574
- J.L. Kazdan, Positive energy in general relativity, Séminaire N. Bourbaki 120 (1982), 315-330 Zbl0496.53043MR689537
- J. M. Lee, T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91 Zbl0633.53062MR888880
- H. Lindblad, I. Rodnianski, Global Existence for the Einstein Vacuum Equations in Wave Coordinates, Comm. Math. Phys. 256 (2005), 43-110 Zbl1081.83003MR2134337
- H. Lindblad, I. Rodnianski, The global stability of Minkowski space-time in harmonic gauge, Ann. Math. 171 (2010), 1401-1477 Zbl1192.53066MR2680391
- D. Maerten, Killing initial data revisited, J. Math. Phys. 45 (2004), 2594-2599 Zbl1071.83005MR2067575
- L. Mazzieri, Generalized gluing for Einstein constraint equations, Calc. Var. 34 (2009), 453-473 MR2476420
- B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (2011) Zbl1317.83030MR2839077
- V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations. I, J. Math. Phys. 16 (1975), 493-498 Zbl0314.53035MR363398
- V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations. II, J. Math. Phys. 17 (1976), 1893-1902 MR416469
- R.M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations (Montecatini Terme, 1987) 1365 (1989), 120-154, Springer Berlin / Heidelberg Zbl0702.49038MR994021
- R.M. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979), 45-76 Zbl0405.53045MR526976
- R.M. Schoen, S.T. Yau, Proof of the positive mass theorem II, Commun. Math. Phys. 79 (1981), 231-260 Zbl0494.53028MR612249
- E. Witten, A simple proof of the positive energy theorem, Commun. Math. Phys. 80 (1981), 381-402 Zbl1051.83532MR626707