Gluing principle for the constraint equations in general relativity
- [1] Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France
Séminaire de théorie spectrale et géométrie (2011-2012)
- Volume: 30, page 21-45
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topCortier, Julien. "Principe de recollement des équations des contraintes en relativité générale." Séminaire de théorie spectrale et géométrie 30 (2011-2012): 21-45. <http://eudml.org/doc/275756>.
@article{Cortier2011-2012,
abstract = {La méthode de « recollement » permettant de trouver des solutions des équations des contraintes relativistes est décrite. En particulier, on expose la méthode de Corvino-Schoen pour construire des familles de solutions sur une variété non-compacte avec géométrie prescrite sur un bout asymptotique, en insistant sur le recollement « non-localisé ». Une liste de résultats obtenus par divers auteurs à partir de telles techniques est alors fournie, incluant la question du recollement de métriques riemanniennes en préservant leur courbure scalaire (constante). On donne enfin certaines applications en analyse géométrique et en relativité générale.},
affiliation = {Institut des Hautes Études Scientifiques, 35, route de Chartres, 91440 Bures-sur-Yvette, France},
author = {Cortier, Julien},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {general relativity; Cauchy formulation; constraint equations; gluing},
language = {fre},
pages = {21-45},
publisher = {Institut Fourier},
title = {Principe de recollement des équations des contraintes en relativité générale},
url = {http://eudml.org/doc/275756},
volume = {30},
year = {2011-2012},
}
TY - JOUR
AU - Cortier, Julien
TI - Principe de recollement des équations des contraintes en relativité générale
JO - Séminaire de théorie spectrale et géométrie
PY - 2011-2012
PB - Institut Fourier
VL - 30
SP - 21
EP - 45
AB - La méthode de « recollement » permettant de trouver des solutions des équations des contraintes relativistes est décrite. En particulier, on expose la méthode de Corvino-Schoen pour construire des familles de solutions sur une variété non-compacte avec géométrie prescrite sur un bout asymptotique, en insistant sur le recollement « non-localisé ». Une liste de résultats obtenus par divers auteurs à partir de telles techniques est alors fournie, incluant la question du recollement de métriques riemanniennes en préservant leur courbure scalaire (constante). On donne enfin certaines applications en analyse géométrique et en relativité générale.
LA - fre
KW - general relativity; Cauchy formulation; constraint equations; gluing
UR - http://eudml.org/doc/275756
ER -
References
top- M.T. Anderson, M.A. Khuri, On the Bartnik extension problem for the static vacuum Einstein equations, Class. Quantum Grav. 30 (2013) Zbl1271.83013MR3064190
- R. Arnowitt, S. Deser, C. Misner, Coordinate invariance and energy expressions in general relativity, Phys. Rev. 122 (1961), 997-1006 Zbl0094.23003MR127946
- R. Bartnik, The mass of an asymptotically flat manifold, Commun. Pure Appl. Math. 39 (1986), 661-693 Zbl0598.53045MR849427
- R. Bartnik, J. Isenberg, The constraint equations, The Einstein equations and the large scale behavior of gravitational fields : 50 years of the Cauchy problem in general relativity (2004), 1-34, Birkhauser Basel, Switzerland Zbl1073.83009MR2098912
- R. Beig, P.T. Chruściel, Killing Initial Data, Class. Quantum Grav. 14 (1997), A83-A92 Zbl0871.53063MR1691888
- R. Beig, P.T. Chruściel, R.M. Schoen, KIDs are non-generic, Ann. H. Poincaré 6 (2005), 155-194 Zbl1145.83306MR2121280
- Y. Choquet-Bruhat, R. Geroch, Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys. 14 (1969), 329-335 Zbl0182.59901MR250640
- P.T. Chruściel, On the invariant mass conjecture in general relativity, Commun. Math. Phys. 120 (1988), 233-248 Zbl0661.53060MR973533
- P.T. Chruściel, J. Corvino, J. Isenberg, Construction of N-Body Initial Data Sets in General Relativity, Commun. Math. Phys. 304 (2011), 637-647 Zbl1216.83010MR2794541
- P.T. Chruściel, E. Delay, On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. Fr. (2003) Zbl1058.83007MR2031583
- P.T. Chruściel, E. Delay, Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature, Comm. Anal. Geom. 17 (2009), 343-381 Zbl1187.53075MR2520913
- P.T. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math 212 (2003), 231-264 Zbl1056.53025MR2038048
- P.T. Chruściel, J. Isenberg, D. Pollack, Initial data engineering, Commun. Math. Phys. 257 (2005), 29-42 Zbl1080.83002MR2163567
- P.T. Chruściel, J. Jezierski, S. Leski, The Trautman-Bondi mass of hyperboloidal initial data sets, Adv. Theor. Math. Phys. 8 (2004), 83-139 Zbl1086.81066MR2086675
- P.T. Chruściel, F. Pacard, D. Pollack, Singular Yamabe metrics and initial data with exactly Kottler-Schwarzschild-de Sitter ends II, Math. Res. Lett. 16 (2009), 157-164 Zbl1170.83004MR2480569
- P.T. Chruściel, D. Pollack, Singular Yamabe metrics and initial data with exactly Kottler-Schwarzschild-de Sitter ends, Ann. H. Poincaré 9 (2008), 639-654 Zbl1144.83004MR2413198
- J. Cortier, A family of asymptotically hyperbolic manifolds with arbitrary energy-momentum vectors, J. Math. Phys. 53 (2012) Zbl1278.83009MR3050585
- J. Cortier, Gluing construction of initial data with Kerr-de Sitter ends, Ann. H. Poincaré 14 (2013), 1109-1134 Zbl1272.83012MR3070748
- J. Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), 137-189 Zbl1031.53064MR1794269
- J. Corvino, M. Eichmair, P. Miao, Deformation of scalar curvature and volume, Math. Ann. (2013) Zbl1278.53041MR3096517
- J. Corvino, R.M. Schoen, On the asymptotics for the vacuum Einstein constraint equations, J. Diff. Geom. 73 (2006), 185-217 Zbl1122.58016MR2225517
- E. Delay, Localized gluing of Riemannian metrics in interpolating their scalar curvature, Diff. Geom. Appl. 29 (2011), 433-439 Zbl1219.53041MR2795849
- E. Delay, Smooth compactly supported solutions of some underdetermined elliptic PDE, with gluing applications, Comm. PDE 37 (2012), 1689-1716 Zbl1268.58018MR2971203
- E. Delay, L. Mazzieri, Refined gluing for vacuum Einstein constraint equations, (2010) Zbl1316.53043
- Y. Fourès-Bruhat, Théorèmes d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math 88 (1952), 141-225 Zbl0049.19201MR53338
- M. Herzlich, Théorèmes de masse positive, Séminaire de Théorie Spectrale et Géométrie 16 (1998), 107-126 Zbl0949.53002MR1626060
- E. Humbert, Relativité générale (d’après M. Vaugon) et quelques problèmes mathématiques qui en sont issus, (2010)
- J. Isenberg, D. Maxwell, D. Pollack, A gluing construction for non-vacuum solutions of the Einstein contraint equations, Adv. Theor. Math. Phys. 9 (2005), 129-172 Zbl1101.83005MR2193370
- J.L. Jauregui, Fill-ins of nonnegative scalar curvature, static metrics, and quasi-local mass, Pacific. J. Math. 261 (2013), 417-444 Zbl1268.53043MR3037574
- J.L. Kazdan, Positive energy in general relativity, Séminaire N. Bourbaki 120 (1982), 315-330 Zbl0496.53043MR689537
- J. M. Lee, T. H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), 37-91 Zbl0633.53062MR888880
- H. Lindblad, I. Rodnianski, Global Existence for the Einstein Vacuum Equations in Wave Coordinates, Comm. Math. Phys. 256 (2005), 43-110 Zbl1081.83003MR2134337
- H. Lindblad, I. Rodnianski, The global stability of Minkowski space-time in harmonic gauge, Ann. Math. 171 (2010), 1401-1477 Zbl1192.53066MR2680391
- D. Maerten, Killing initial data revisited, J. Math. Phys. 45 (2004), 2594-2599 Zbl1071.83005MR2067575
- L. Mazzieri, Generalized gluing for Einstein constraint equations, Calc. Var. 34 (2009), 453-473 MR2476420
- B. Michel, Geometric invariance of mass-like asymptotic invariants, J. Math. Phys. 52 (2011) Zbl1317.83030MR2839077
- V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations. I, J. Math. Phys. 16 (1975), 493-498 Zbl0314.53035MR363398
- V. Moncrief, Space-time symmetries and linearization stability of the Einstein equations. II, J. Math. Phys. 17 (1976), 1893-1902 MR416469
- R.M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations (Montecatini Terme, 1987) 1365 (1989), 120-154, Springer Berlin / Heidelberg Zbl0702.49038MR994021
- R.M. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65 (1979), 45-76 Zbl0405.53045MR526976
- R.M. Schoen, S.T. Yau, Proof of the positive mass theorem II, Commun. Math. Phys. 79 (1981), 231-260 Zbl0494.53028MR612249
- E. Witten, A simple proof of the positive energy theorem, Commun. Math. Phys. 80 (1981), 381-402 Zbl1051.83532MR626707
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.