A compactification of a manifold with asymptotically nonnegative curvature

Atsushi Kasue

Annales scientifiques de l'École Normale Supérieure (1988)

  • Volume: 21, Issue: 4, page 593-622
  • ISSN: 0012-9593

How to cite

top

Kasue, Atsushi. "A compactification of a manifold with asymptotically nonnegative curvature." Annales scientifiques de l'École Normale Supérieure 21.4 (1988): 593-622. <http://eudml.org/doc/82238>.

@article{Kasue1988,
author = {Kasue, Atsushi},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {sectional curvature; asymptotically nonnegatively curved Riemannian manifold; Buseman function; exhaustion function},
language = {eng},
number = {4},
pages = {593-622},
publisher = {Elsevier},
title = {A compactification of a manifold with asymptotically nonnegative curvature},
url = {http://eudml.org/doc/82238},
volume = {21},
year = {1988},
}

TY - JOUR
AU - Kasue, Atsushi
TI - A compactification of a manifold with asymptotically nonnegative curvature
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1988
PB - Elsevier
VL - 21
IS - 4
SP - 593
EP - 622
LA - eng
KW - sectional curvature; asymptotically nonnegatively curved Riemannian manifold; Buseman function; exhaustion function
UR - http://eudml.org/doc/82238
ER -

References

top
  1. [1] U. ABRESCH, Lower Curvature Bounds, Toponogov's Theorem, and Bounded Topology (Ann. scient. Éc. Norm. Sup., Paris, Vol. 28, 1985, pp. 651-670). Zbl0595.53043MR87j:53058
  2. [2] M. T. ANDERSON, The Compactification of a Minimal Submanifold in Euclidean Space by the Gauss Map, preprint. 
  3. [3] W. BALLMANN, M. GROMOV and V. SCHROEDER, Manifolds of Nonpositive Curvature (Progress in Math., No. 61, Birkhöuser, Boston-Basel-Stuttgart, 1985). Zbl0591.53001MR87h:53050
  4. [4] J. CHEEGER and D. C. EBIN, Comparison Theorems in Riemannian Geometry, North-Holland Math., Libraly 9, North-Holland Publ. Amsterdam-Oxford-New York, 1975. Zbl0309.53035MR56 #16538
  5. [5] J. CHEEGER and D. GROMOLL, The Splitting Theorem for Manifolds of Nonnegative Ricci Curvature (J. Differential Geom., Vol. 6, 1971, pp. 119-128). Zbl0223.53033MR46 #2597
  6. [6] J. CHEEGER and D. GROMOLL, On the Structure of Complete Manifolds of Nonnegative Curvature (Ann. of Math., Vol. 96, 1974, pp. 413-443). Zbl0246.53049MR46 #8121
  7. [7] S. Y. CHENG, P. LI and S. T. YAU, On the Upper Estimate of the Heat Kernel of a Complete Riemannian Manifold (Amer. J. Math. Vol. 103, 1981, pp. 1021-1063). Zbl0484.53035MR83c:58083
  8. [8] H. DONNELY and P. LI, Heat Equation and Compactification of Complete Riemannian Manifolds (Duke Math. J., Vol. 51, 1984, pp. 667-673). Zbl0546.53029MR85h:58162
  9. [9] K. FUKAYA, On a Compactification of the Set of Riemannian Manifolds with Bounded Curvatures and Diameters, Curvature and Topology of Riemannian Manifolds (Lecture Notes in Math., No. 1201, Springer-Verlag, 1986). Zbl0598.53042MR87k:53090
  10. [10] R. E. GREENE and H. WU, C∞ Convex Functions and Manifolds of Positive Curvature (Acta Math., Vol. 137, 1976, pp. 209-245). Zbl0372.53019MR56 #16539
  11. [11] R. E. GREENE and H. WU, Function Theory on Manifolds which Possess a Pole (Lecture Notes in Math., No. 699, Springer-Verlag, 1979). Zbl0414.53043MR81a:53002
  12. [12] R. E. GREENE and H. WU, C∞ Approximation of Convex, Subharmonic and Plurisubharmonic Functions (Ann. scient. Ec. Norm. Sup., Paris, Vol. 12, 1979, pp. 47-84). Zbl0415.31001MR80m:53055
  13. [13] R. E. GREENE and H. WU, Lipschitz Convergence of Riemannian Manifolds, (Pacific J. Math., Vol. 131, 1988, pp. 119-141). Zbl0646.53038MR89g:53063
  14. [14] M. GROMOV, Curvature, Diameter, and Betti Numbers (Comment. Math. Helv., Vol. 56, 1981, pp. 179-195). Zbl0467.53021MR82k:53062
  15. [15] M. GROMOV, Structures métriques pour les variétés riemanniennes, redigé par J. LAFONTAINE et P. PANSU, Textes Math., No. 1, Edic/Fernand Nathan, Paris, 1981. Zbl0509.53034MR85e:53051
  16. [16] K. GROVE and K. SHIOHAMA, A Generalized Sphere Theorem (Ann. of Math., Vol. 106, 1977, pp. 201-211). Zbl0341.53029MR58 #18268
  17. [17] A. KASUE, A Laplacian Comparison Theorem and Function Theoretic Properties of a Complete Riemannian Manifold (Japan. J. Math., Vol. 8, 1982, pp. 309-341). Zbl0518.53048MR85h:53031
  18. [18] A. KASUE, Applications of Laplacian and Hessian Comparison Theorems, Geometry of Geodesics and Related Topics, K. SHIOHAMA Ed., Advanced Studies in Pure Math., Vol. 3, 1984, pp. 333-386. Zbl0578.53029MR86j:53062
  19. [19] A. KASUE, On Manifolds of Asymptotically Nonnegative Curvature, preprint #09208-86, M.S.R.I. Berkeley, Cal., July, 1986. 
  20. [20] A. KASUE, A Convergence Theorem for Riemannian Manifolds and Some Applications, to appear in Nagoya Math. J., Vol. 114, 1989. Zbl0682.53042MR90g:53053
  21. [21] A. KASUE, Harmonic Functions with Growth Conditions on a Manifold of Asymptotically Nonnegative Curvature I, II, to appear. Zbl0745.31007
  22. [22] B. O'NEILL, The Fundamental Equations for a Submersion (Mich. Math. J., Vol. 13, 1966, pp. 459-469). Zbl0145.18602MR34 #751
  23. [23] K. SHIOHAMA, Busemann Functions and Total Curvature (Inventiones math., Vol. 53, 1979, pp. 281-297). Zbl0433.53050MR80m:53039
  24. [24] K. SHIOHAMA, Topology of a Complete Noncompact Manifold, Geometry of Geodesics and Related Topics, K. SHIOHAMA Ed., Advanced Studies in Pure Math., Vol. 3, 1984, pp. 423-450. Zbl0551.53021MR85m:53043
  25. [25] V. A. TOPONOGOV, Riemannian Spaces which Contain Straight Lines (Amer. Math. Soc. Transl. Ser., Vol. 37, 1964, pp. 287-290). Zbl0138.42902
  26. [26] V. A. TOPONOGOV, Riemannian Spaces Having their Curvature Bounded Below by a Positive Number (Amer. Math. Soc. Transl. Ser., Vol. 37, 1964, pp. 291-336). Zbl0136.42904
  27. [27] H. WU, An Elementary Method in the Study of Nonnegative Curvature (Acta Math., Vol. 142, 1979, pp. 57-78). Zbl0403.53022MR80c:53054
  28. [28] H. WU, Lectures at U. C. Berkeley, Spring, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.