Canonical metric on the domain of discontinuity of a kleinian group

Hiroyasu Izeki; Shin Nayatani

Séminaire de théorie spectrale et géométrie (1997-1998)

  • Volume: 16, page 9-32
  • ISSN: 1624-5458

How to cite

top

Izeki, Hiroyasu, and Nayatani, Shin. "Canonical metric on the domain of discontinuity of a kleinian group." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 9-32. <http://eudml.org/doc/114426>.

@article{Izeki1997-1998,
author = {Izeki, Hiroyasu, Nayatani, Shin},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Kleinian group; conformal structure; Hausdorff dimension; limit set; Yamabe conformal invariant; quotient manifold; vanishing theorem; cohomology},
language = {eng},
pages = {9-32},
publisher = {Institut Fourier},
title = {Canonical metric on the domain of discontinuity of a kleinian group},
url = {http://eudml.org/doc/114426},
volume = {16},
year = {1997-1998},
}

TY - JOUR
AU - Izeki, Hiroyasu
AU - Nayatani, Shin
TI - Canonical metric on the domain of discontinuity of a kleinian group
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 9
EP - 32
LA - eng
KW - Kleinian group; conformal structure; Hausdorff dimension; limit set; Yamabe conformal invariant; quotient manifold; vanishing theorem; cohomology
UR - http://eudml.org/doc/114426
ER -

References

top
  1. [1] B.N. APANASOV. - Kobayashi conformai merrieon manifolds, Chern-Simons and n-invariants, Internat. J. Math., 2 ( 1991), 361-382. Zbl0761.53010MR1113566
  2. [2] G. BESSON, G. COURTOIS and S. GALLOT. - Volume et entropie minimale des espaces localement symétriques, Invent. Math., 103 ( 1991), 417-445. Zbl0723.53029MR1085114
  3. [3] G. BESSON, G. COURTOIS and S. GALLOT. - Entropies et rigidités des espaces localement symétriques de courbure strictement négative, G.A.F.A., 5 ( 1995), 731-799. Zbl0851.53032MR1354289
  4. [4] G. BESSON, G. COURTOIS and S. GALLOT. - Lemme de Schwarz réel et applications, preprint . Zbl1035.53038
  5. [5] R. BOTT and L.W. TU. - Differential Forms in Algebraic Topology, GTM 82, Springer-Verlag ( 1982). Zbl0496.55001MR658304
  6. [6] M. BOURDON. - Sur le birapport au bord des CAT(-l)-sepaces, I.H.E.S. Publ . Math. , 83 ( 1996), 95 - 104. Zbl0883.53047MR1423021
  7. [7] M. BOURDON. - Thesis. 
  8. [8] R. BOWEN. - Hausdorff dimension of quasi-circles, Publ. Math. I.H.E.S., 50 ( 1979), 11-25. Zbl0439.30032
  9. [9] K.S. BROWN. - Cohomology of Groups, GTM 87, Springer-Verlag ( 1982). Zbl0584.20036MR672956
  10. [10] A. DOUADY and C.J. EARLE. - Conformally natural extension of homeomorphisms of the circle, Acta Math., 157 ( 1986), 23 - 48. Zbl0615.30005MR857678
  11. [11] H. IZEKI. - Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math., 122 ( 1995), 603 - 625. Zbl0854.53035MR1359605
  12. [12] H. IZEKI. - The quasiconformal stability of Klein ian groups and an embedding ofa space of flat conformal structures, preprint Zbl0959.58027
  13. [13] R.S. KULKARNI and U. PINKALL. - A canonical metric for Möbius structures and its applications, Math. Z., 216 ( 1994), 89-129. Zbl0813.53022MR1273468
  14. [14] H. LEUTWILER. - A Riemannian metric invariant under Möbius transformations in Rn, Complex analysis, Joensuu 1987, 223-235, Lecture Notes in Math., 1351, Springer, Berlin-New York, 1988. Zbl0687.31002MR982087
  15. [15] R. MAZZEO and R. PHILLIPS. - Hodge theoryon hyperbolic manifolds, Duke Math. J., 60 ( 1990),509-559. Zbl0712.58006MR1047764
  16. [16] J. MAUBON. - Geometrically finite Kleinian groups: the completeness of Nayatani's metric, C. R.Acad. Sci. Paris, 325 ( 1997), 1065-1070. Zbl0895.30030MR1614003
  17. [17] S. NAYATANI. - Patterson-Sullivan measure and conformally flat metrics, Math. Z., 225 ( 1997), 115-131. Zbl0868.53024MR1451336
  18. [18] S. NAYATANI. - Kleinian groups and conformally flat metrics, Geometry and Global Analysis, Report of the First MSJ International Research Institute, Kotake et al. éd., Tohoku University ( 1993), 341-349. Zbl1040.53502MR1361199
  19. [19] P.J. NICHOLLS. - The ergodic theory of discrete groups, LMS Lect. Notes Ser. 143, Cambridge University Press, Cambridge, 1989. Zbl0674.58001MR1041575
  20. [20] P. PANSU. - Matsushima's and Garland's vanishing theorems, and property(T), talk given at Max-Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig ( 1996). 
  21. [21] S.J. PATTERSON. - The limit set of a Fuchsian group, Acta Math., 136 ( 1976), 241-273. Zbl0336.30005MR450547
  22. [22] R. SCHOEN and S.-T. YAU. - Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math., 92 ( 1988), 47-71. Zbl0658.53038MR931204
  23. [23] D. SULLIVAN. - The density at infinity of a discrete group of hyperbolic motions, I.H.E.S. Publ. Math., 50 ( 1979), 171-202. Zbl0439.30034MR556586
  24. [24] D. SULLIVAN. - Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 ( 1984), 259-277. Zbl0566.58022MR766265
  25. [25] C.-B. YUE. - Dimension and rigidity of quasi-fuchsian representations, Ann. Math., 143 ( 1996), 331-355. Zbl0843.22019MR1381989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.