Canonical metric on the domain of discontinuity of a kleinian group
Séminaire de théorie spectrale et géométrie (1997-1998)
- Volume: 16, page 9-32
- ISSN: 1624-5458
Access Full Article
topHow to cite
topIzeki, Hiroyasu, and Nayatani, Shin. "Canonical metric on the domain of discontinuity of a kleinian group." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 9-32. <http://eudml.org/doc/114426>.
@article{Izeki1997-1998,
author = {Izeki, Hiroyasu, Nayatani, Shin},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Kleinian group; conformal structure; Hausdorff dimension; limit set; Yamabe conformal invariant; quotient manifold; vanishing theorem; cohomology},
language = {eng},
pages = {9-32},
publisher = {Institut Fourier},
title = {Canonical metric on the domain of discontinuity of a kleinian group},
url = {http://eudml.org/doc/114426},
volume = {16},
year = {1997-1998},
}
TY - JOUR
AU - Izeki, Hiroyasu
AU - Nayatani, Shin
TI - Canonical metric on the domain of discontinuity of a kleinian group
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 9
EP - 32
LA - eng
KW - Kleinian group; conformal structure; Hausdorff dimension; limit set; Yamabe conformal invariant; quotient manifold; vanishing theorem; cohomology
UR - http://eudml.org/doc/114426
ER -
References
top- [1] B.N. APANASOV. - Kobayashi conformai merrieon manifolds, Chern-Simons and n-invariants, Internat. J. Math., 2 ( 1991), 361-382. Zbl0761.53010MR1113566
- [2] G. BESSON, G. COURTOIS and S. GALLOT. - Volume et entropie minimale des espaces localement symétriques, Invent. Math., 103 ( 1991), 417-445. Zbl0723.53029MR1085114
- [3] G. BESSON, G. COURTOIS and S. GALLOT. - Entropies et rigidités des espaces localement symétriques de courbure strictement négative, G.A.F.A., 5 ( 1995), 731-799. Zbl0851.53032MR1354289
- [4] G. BESSON, G. COURTOIS and S. GALLOT. - Lemme de Schwarz réel et applications, preprint . Zbl1035.53038
- [5] R. BOTT and L.W. TU. - Differential Forms in Algebraic Topology, GTM 82, Springer-Verlag ( 1982). Zbl0496.55001MR658304
- [6] M. BOURDON. - Sur le birapport au bord des CAT(-l)-sepaces, I.H.E.S. Publ . Math. , 83 ( 1996), 95 - 104. Zbl0883.53047MR1423021
- [7] M. BOURDON. - Thesis.
- [8] R. BOWEN. - Hausdorff dimension of quasi-circles, Publ. Math. I.H.E.S., 50 ( 1979), 11-25. Zbl0439.30032
- [9] K.S. BROWN. - Cohomology of Groups, GTM 87, Springer-Verlag ( 1982). Zbl0584.20036MR672956
- [10] A. DOUADY and C.J. EARLE. - Conformally natural extension of homeomorphisms of the circle, Acta Math., 157 ( 1986), 23 - 48. Zbl0615.30005MR857678
- [11] H. IZEKI. - Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math., 122 ( 1995), 603 - 625. Zbl0854.53035MR1359605
- [12] H. IZEKI. - The quasiconformal stability of Klein ian groups and an embedding ofa space of flat conformal structures, preprint Zbl0959.58027
- [13] R.S. KULKARNI and U. PINKALL. - A canonical metric for Möbius structures and its applications, Math. Z., 216 ( 1994), 89-129. Zbl0813.53022MR1273468
- [14] H. LEUTWILER. - A Riemannian metric invariant under Möbius transformations in Rn, Complex analysis, Joensuu 1987, 223-235, Lecture Notes in Math., 1351, Springer, Berlin-New York, 1988. Zbl0687.31002MR982087
- [15] R. MAZZEO and R. PHILLIPS. - Hodge theoryon hyperbolic manifolds, Duke Math. J., 60 ( 1990),509-559. Zbl0712.58006MR1047764
- [16] J. MAUBON. - Geometrically finite Kleinian groups: the completeness of Nayatani's metric, C. R.Acad. Sci. Paris, 325 ( 1997), 1065-1070. Zbl0895.30030MR1614003
- [17] S. NAYATANI. - Patterson-Sullivan measure and conformally flat metrics, Math. Z., 225 ( 1997), 115-131. Zbl0868.53024MR1451336
- [18] S. NAYATANI. - Kleinian groups and conformally flat metrics, Geometry and Global Analysis, Report of the First MSJ International Research Institute, Kotake et al. éd., Tohoku University ( 1993), 341-349. Zbl1040.53502MR1361199
- [19] P.J. NICHOLLS. - The ergodic theory of discrete groups, LMS Lect. Notes Ser. 143, Cambridge University Press, Cambridge, 1989. Zbl0674.58001MR1041575
- [20] P. PANSU. - Matsushima's and Garland's vanishing theorems, and property(T), talk given at Max-Planck-Institut für Mathematik in den Naturwissenschaften in Leipzig ( 1996).
- [21] S.J. PATTERSON. - The limit set of a Fuchsian group, Acta Math., 136 ( 1976), 241-273. Zbl0336.30005MR450547
- [22] R. SCHOEN and S.-T. YAU. - Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math., 92 ( 1988), 47-71. Zbl0658.53038MR931204
- [23] D. SULLIVAN. - The density at infinity of a discrete group of hyperbolic motions, I.H.E.S. Publ. Math., 50 ( 1979), 171-202. Zbl0439.30034MR556586
- [24] D. SULLIVAN. - Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 ( 1984), 259-277. Zbl0566.58022MR766265
- [25] C.-B. YUE. - Dimension and rigidity of quasi-fuchsian representations, Ann. Math., 143 ( 1996), 331-355. Zbl0843.22019MR1381989
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.