Rigidity and cohomology of hyperbolic manifolds
- [1] Université de Nantes Laboratoire de mathématiques Jean Leray 2, rue de la Houssinière BP 92208 44322 Nantes cedex 03 (France)
Annales de l’institut Fourier (2010)
- Volume: 60, Issue: 7, page 2307-2331
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCarron, Gilles. "Rigidity and $L^2$ cohomology of hyperbolic manifolds." Annales de l’institut Fourier 60.7 (2010): 2307-2331. <http://eudml.org/doc/116335>.
@article{Carron2010,
abstract = {When $X=\Gamma \backslash \mathbb\{H\}^n$ is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of $L^2$ harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.},
affiliation = {Université de Nantes Laboratoire de mathématiques Jean Leray 2, rue de la Houssinière BP 92208 44322 Nantes cedex 03 (France)},
author = {Carron, Gilles},
journal = {Annales de l’institut Fourier},
keywords = {$L^2$ harmonic form; hyperbolic manifold; critical exponent; harmonic form},
language = {eng},
number = {7},
pages = {2307-2331},
publisher = {Association des Annales de l’institut Fourier},
title = {Rigidity and $L^2$ cohomology of hyperbolic manifolds},
url = {http://eudml.org/doc/116335},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Carron, Gilles
TI - Rigidity and $L^2$ cohomology of hyperbolic manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2307
EP - 2331
AB - When $X=\Gamma \backslash \mathbb{H}^n$ is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of $L^2$ harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.
LA - eng
KW - $L^2$ harmonic form; hyperbolic manifold; critical exponent; harmonic form
UR - http://eudml.org/doc/116335
ER -
References
top- Michael T. Anderson, harmonic forms on complete Riemannian manifolds, Geometry and analysis on manifolds (Katata/Kyoto, 1987) 1339 (1988), 1-19, Springer, Berlin Zbl0652.53030MR961469
- Riccardo Benedetti, Carlo Petronio, Lectures on hyperbolic geometry, (1992), Springer-Verlag, Berlin Zbl0768.51018MR1219310
- Gérard Besson, Gilles Courtois, Sylvestre Gallot, Lemme de Schwarz réel et applications géométriques, Acta Math. 183 (1999), 145-169 Zbl1035.53038MR1738042
- Gérard Besson, Gilles Courtois, Sylvestre Gallot, Hyperbolic manifolds, amalgamated products and critical exponents, C. R. Math. Acad. Sci. Paris 336 (2003), 257-261 Zbl1026.57013MR1968269
- Gérard Besson, Gilles Courtois, Sylvestre Gallot, Rigidity of amalgamated products in negative curvature, J. Differential Geom. 79 (2008), 335-387 Zbl1206.53038MR2433927
- Christopher J. Bishop, Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), 1-39 Zbl0921.30032MR1484767
- Marc Bourdon, Sur le birapport au bord des -espaces, Inst. Hautes Études Sci. Publ. Math. (1996), 95-104 Zbl0883.53047MR1423021
- Jean-Pierre Bourguignon, The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988) 4 (1990), 251-271, Birkhäuser Boston, Boston, MA Zbl0774.35003MR1205158
- Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979), 11-25 Zbl0439.30032MR556580
- T. Branson, Kato constants in Riemannian geometry, Math. Res. Lett. 7 (2000), 245-261 Zbl1039.53033MR1764320
- David M. J. Calderbank, Paul Gauduchon, Marc Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), 214-255 Zbl0960.58010MR1760284
- Gilles Carron, Emmanuel Pedon, On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), 705-747 Zbl1170.53309MR2124586
- Hiroyasu Izeki, Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math. 122 (1995), 603-625 Zbl0854.53035MR1359605
- Hiroyasu Izeki, Shin Nayatani, Canonical metric on the domain of discontinuity of a Kleinian group, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998 16 (1997–1998), 9-32, Univ. Grenoble I, Saint Zbl0979.53036
- Michael Kapovich, Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal. 18 (2009), 2017-2054 Zbl1178.30056MR2491697
- Peter Li, Jiaping Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), 501-534 Zbl1032.58016MR1906784
- Rafe Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), 309-339 Zbl0656.53042MR961517
- Rafe Mazzeo, Ralph S. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. J. 60 (1990), 509-559 Zbl0712.58006MR1047764
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273 Zbl0336.30005MR450547
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 149 (1994), Springer-Verlag, New York Zbl0809.51001MR1299730
- Yehuda Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2) 152 (2000), 113-182 Zbl0970.22011MR1792293
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979), 171-202 Zbl0439.30034MR556586
- Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), 327-351 Zbl0615.53029MR882827
- Xiaodong Wang, On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001), 671-688 Zbl1053.53030MR1879811
- Xiaodong Wang, On the -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), 311-327 Zbl1221.58023MR1944573
- Nader Yeganefar, Sur la -cohomologie des variétés à courbure négative, Duke Math. J. 122 (2004), 145-180 Zbl1069.58013MR2046810
- Chengbo Yue, Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2) 143 (1996), 331-355 Zbl0843.22019MR1381989
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.