Rigidity and L 2 cohomology of hyperbolic manifolds

Gilles Carron[1]

  • [1] Université de Nantes Laboratoire de mathématiques Jean Leray 2, rue de la Houssinière BP 92208 44322 Nantes cedex 03 (France)

Annales de l’institut Fourier (2010)

  • Volume: 60, Issue: 7, page 2307-2331
  • ISSN: 0373-0956

Abstract

top
When X = Γ n is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of L 2 harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.

How to cite

top

Carron, Gilles. "Rigidity and $L^2$ cohomology of hyperbolic manifolds." Annales de l’institut Fourier 60.7 (2010): 2307-2331. <http://eudml.org/doc/116335>.

@article{Carron2010,
abstract = {When $X=\Gamma \backslash \mathbb\{H\}^n$ is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of $L^2$ harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.},
affiliation = {Université de Nantes Laboratoire de mathématiques Jean Leray 2, rue de la Houssinière BP 92208 44322 Nantes cedex 03 (France)},
author = {Carron, Gilles},
journal = {Annales de l’institut Fourier},
keywords = {$L^2$ harmonic form; hyperbolic manifold; critical exponent; harmonic form},
language = {eng},
number = {7},
pages = {2307-2331},
publisher = {Association des Annales de l’institut Fourier},
title = {Rigidity and $L^2$ cohomology of hyperbolic manifolds},
url = {http://eudml.org/doc/116335},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Carron, Gilles
TI - Rigidity and $L^2$ cohomology of hyperbolic manifolds
JO - Annales de l’institut Fourier
PY - 2010
PB - Association des Annales de l’institut Fourier
VL - 60
IS - 7
SP - 2307
EP - 2331
AB - When $X=\Gamma \backslash \mathbb{H}^n$ is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of $L^2$ harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.
LA - eng
KW - $L^2$ harmonic form; hyperbolic manifold; critical exponent; harmonic form
UR - http://eudml.org/doc/116335
ER -

References

top
  1. Michael T. Anderson, L 2 harmonic forms on complete Riemannian manifolds, Geometry and analysis on manifolds (Katata/Kyoto, 1987) 1339 (1988), 1-19, Springer, Berlin Zbl0652.53030MR961469
  2. Riccardo Benedetti, Carlo Petronio, Lectures on hyperbolic geometry, (1992), Springer-Verlag, Berlin Zbl0768.51018MR1219310
  3. Gérard Besson, Gilles Courtois, Sylvestre Gallot, Lemme de Schwarz réel et applications géométriques, Acta Math. 183 (1999), 145-169 Zbl1035.53038MR1738042
  4. Gérard Besson, Gilles Courtois, Sylvestre Gallot, Hyperbolic manifolds, amalgamated products and critical exponents, C. R. Math. Acad. Sci. Paris 336 (2003), 257-261 Zbl1026.57013MR1968269
  5. Gérard Besson, Gilles Courtois, Sylvestre Gallot, Rigidity of amalgamated products in negative curvature, J. Differential Geom. 79 (2008), 335-387 Zbl1206.53038MR2433927
  6. Christopher J. Bishop, Peter W. Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997), 1-39 Zbl0921.30032MR1484767
  7. Marc Bourdon, Sur le birapport au bord des CAT ( - 1 ) -espaces, Inst. Hautes Études Sci. Publ. Math. (1996), 95-104 Zbl0883.53047MR1423021
  8. Jean-Pierre Bourguignon, The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988) 4 (1990), 251-271, Birkhäuser Boston, Boston, MA Zbl0774.35003MR1205158
  9. Rufus Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979), 11-25 Zbl0439.30032MR556580
  10. T. Branson, Kato constants in Riemannian geometry, Math. Res. Lett. 7 (2000), 245-261 Zbl1039.53033MR1764320
  11. David M. J. Calderbank, Paul Gauduchon, Marc Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), 214-255 Zbl0960.58010MR1760284
  12. Gilles Carron, Emmanuel Pedon, On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), 705-747 Zbl1170.53309MR2124586
  13. Hiroyasu Izeki, Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math. 122 (1995), 603-625 Zbl0854.53035MR1359605
  14. Hiroyasu Izeki, Shin Nayatani, Canonical metric on the domain of discontinuity of a Kleinian group, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998 16 (1997–1998), 9-32, Univ. Grenoble I, Saint Zbl0979.53036
  15. Michael Kapovich, Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal. 18 (2009), 2017-2054 Zbl1178.30056MR2491697
  16. Peter Li, Jiaping Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), 501-534 Zbl1032.58016MR1906784
  17. Rafe Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), 309-339 Zbl0656.53042MR961517
  18. Rafe Mazzeo, Ralph S. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. J. 60 (1990), 509-559 Zbl0712.58006MR1047764
  19. S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273 Zbl0336.30005MR450547
  20. John G. Ratcliffe, Foundations of hyperbolic manifolds, 149 (1994), Springer-Verlag, New York Zbl0809.51001MR1299730
  21. Yehuda Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2) 152 (2000), 113-182 Zbl0970.22011MR1792293
  22. Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979), 171-202 Zbl0439.30034MR556586
  23. Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), 327-351 Zbl0615.53029MR882827
  24. Xiaodong Wang, On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001), 671-688 Zbl1053.53030MR1879811
  25. Xiaodong Wang, On the L 2 -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), 311-327 Zbl1221.58023MR1944573
  26. Nader Yeganefar, Sur la L 2 -cohomologie des variétés à courbure négative, Duke Math. J. 122 (2004), 145-180 Zbl1069.58013MR2046810
  27. Chengbo Yue, Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2) 143 (1996), 331-355 Zbl0843.22019MR1381989

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.