On the differential form spectrum of hyperbolic manifolds

Gilles Carron[1]; Emmanuel Pedon[2]

  • [1] Laboratoire de Mathématiques Jean Leray (UMR 6629) Université de Nantes 2 rue de la Houssinière B.P. 92208 44322 Nantes Cedex 3, France
  • [2] Laboratoire de Mathématiques (UMR 6056) Université de Reims Moulin de la Housse B.P. 1039 51687 Reims Cedex 2, France

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)

  • Volume: 3, Issue: 4, page 705-747
  • ISSN: 0391-173X

Abstract

top
We give a lower bound for the bottom of the L 2 differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.

How to cite

top

Carron, Gilles, and Pedon, Emmanuel. "On the differential form spectrum of hyperbolic manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.4 (2004): 705-747. <http://eudml.org/doc/84547>.

@article{Carron2004,
abstract = {We give a lower bound for the bottom of the $L^2$ differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.},
affiliation = {Laboratoire de Mathématiques Jean Leray (UMR 6629) Université de Nantes 2 rue de la Houssinière B.P. 92208 44322 Nantes Cedex 3, France; Laboratoire de Mathématiques (UMR 6056) Université de Reims Moulin de la Housse B.P. 1039 51687 Reims Cedex 2, France},
author = {Carron, Gilles, Pedon, Emmanuel},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {705-747},
publisher = {Scuola Normale Superiore, Pisa},
title = {On the differential form spectrum of hyperbolic manifolds},
url = {http://eudml.org/doc/84547},
volume = {3},
year = {2004},
}

TY - JOUR
AU - Carron, Gilles
AU - Pedon, Emmanuel
TI - On the differential form spectrum of hyperbolic manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 4
SP - 705
EP - 747
AB - We give a lower bound for the bottom of the $L^2$ differential form spectrum on hyperbolic manifolds, generalizing thus a well-known result due to Sullivan and Corlette in the function case. Our method is based on the study of the resolvent associated with the Hodge-de Rham laplacian and leads to applications for the (co)homology and topology of certain classes of hyperbolic manifolds.
LA - eng
UR - http://eudml.org/doc/84547
ER -

References

top
  1. [Alb] P. Albuquerque, Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal. 9 (1999), 1-28. Zbl0954.53031MR1675889
  2. [AAR] G. E. Andrews – R. Askey – R. Roy, “Special functions”, Encyclopedia Math. Appl. 71., Cambridge Univ. Press, 1999. Zbl0920.33001MR1688958
  3. [ADY] J.-Ph. Anker – E. Damek – C. Yacoub, Spherical analysis on harmonic A N groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 643-679. Zbl0881.22008MR1469569
  4. [AJ] J.-Ph. Anker – L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, Geom. Funct. Anal. 9 (1999), 1035-1091. Zbl0942.43005MR1736928
  5. [BCG1] G. Besson – G. Courtois – S. Gallot, Lemme de Schwarz réel et applications géométriques, Acta Math. 183 (1999), 145-169. Zbl1035.53038MR1738042
  6. [BCG2] G. Besson – G. Courtois – S. Gallot, Hyperbolic manifolds, almagamated products and critical exponents, C. R. Math. Acad. Sci. Paris 336 (2003), 257-261. Zbl1026.57013MR1968269
  7. [Bor] A. Borel, The L 2 -cohomology of negatively curved Riemannian symmetric spaces, Ann. Acad. Scient. Fenn. Series A.I. Math. 10 (1985), 95-105. Zbl0586.57022MR802471
  8. [BW] A. Borel – N. R. Wallach, “Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups", second ed”., Math. Surveys Monogr. 67, Amer. Math. Soc., 2000. Zbl0980.22015MR1721403
  9. [Bow] R. Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11-25. Zbl0439.30032MR556580
  10. [BOS] T. P. Branson – G. Ólafsson – H. Schlichtkrull, A bundle-valued Radon transform, with applications to invariant wave equations, Quart. J. Math. Oxford (2) 45 (1994), 429-461. Zbl0924.43010MR1315457
  11. [BO1] U. Bunke – M. Olbrich, The spectrum of Kleinian manifolds, J. Funct. Anal. 172 (2000), 76-164. Zbl0966.43004MR1749869
  12. [BO2] U. Bunke – M. Olbrich, Nonexistence of invariant distributions supported on the limit set, The 2000 Twente Conference on Lie groups (Enschede), Acta Appl. Math. 73 (2002), 3-13. Zbl1018.22008MR1926489
  13. [BO3] U. Bunke – M. Olbrich, Towards the trace formula for convex-cocompact groups, preprint, 2000. MR1749869
  14. [CGH] D. M. J. Calderbank – P. Gauduchon – M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), 214-255. Zbl0960.58010MR1760284
  15. [CSZ] H. D. Cao – Y. Shen – S. Zhu, The structure of stable minimal hypersurfaces in n + 1 , Math. Res. Lett. 4 (1997), 637-644. Zbl0906.53004MR1484695
  16. [Car] G. Carron, Une suite exacte en L 2 -cohomologie, Duke Math. J. 95 (1998), 343-372. Zbl0951.58024MR1652017
  17. [CG] J. Cheeger – D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geom. 6 (1971-1972), 119-128. Zbl0223.53033MR303460
  18. [Col] Y. Colin de Verdière, Théorie spectrale des surfaces de Riemann d’aire infinie, In: “Colloque en l’honneur de Laurent Schwartz” (Palaiseau, 1983), Vol. 2, Astérisque 132, Soc. Math. France, 1985, pp. 259-275. Zbl0582.58030MR816771
  19. [CM] A. Connes – H. Moscovici, The L 2 -index theorem for homogeneous spaces of Lie groups, Ann. of Math. (2) 115 (1982), 292-330. Zbl0515.58031MR647808
  20. [Cor] K. Corlette, Hausdorff dimensions of limit sets, Invent. Math. 102 (1990), 521-541. Zbl0744.53030MR1074486
  21. [Don] H. Donnelly, The differential form spectrum of hyperbolic space, Manuscripta Math. 33 (1981), 365-385. Zbl0464.58020MR612619
  22. [DF] H. Donnelly – Ch. Fefferman, L 2 -cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), 593-618. Zbl0532.58027MR727705
  23. [Els] J. Elstrodt, Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene, Teil I. Math. Ann. 203 (1973), 295-330; Teil II. Math. Z. 132 (1973), 99-134; Teil III. Math. Ann. 208 (1974), 99-132. Zbl0265.10017MR360472
  24. [EMM] Ch. Epstein – R. Melrose – G. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991), 1-106. Zbl0758.32010MR1111745
  25. [Far] J. Faraut, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, In: “Analyse harmonique”, J. L. Clerc et. al. (eds), Les cours du C.I.M.P.A., Nice, 1982, pp. 315-446. 
  26. [GM] S. Gallot – D. Meyer, Opérateur de courbure et Laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), 259-284. Zbl0316.53036MR454884
  27. [HV] P. de la Harpe – A. Valette, La propriété ( T ) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 Soc. Math. France, (1989). Zbl0759.22001
  28. [Heb] E. Hebey, “Sobolev spaces on Riemannian manifolds”, Lecture Notes in Math., 1635, Springer, 1996. Zbl0866.58068MR1481970
  29. [Hel] S. Helgason, “Differential Geometry, Lie groups, and Symmetric Spaces”, Academic Press, 1978. Zbl0451.53038MR514561
  30. [Ize] H. Izeki, Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math. 122 (1995), 603-625. Zbl0854.53035MR1359605
  31. [IN] H. Izeki – S. Nayatani, Canonical metric on the domain of discontinuity of a Kleinian group, Sémin. Théor. Spectr. Géom. (Univ. Grenoble-I) 16 (1997-1998), 9-32. Zbl0979.53036MR1666506
  32. [Kna] A. W. Knapp, “Representation Theory of Semisimple Groups. An Overview Based on Examples”, Princeton Math. Ser. 36, Princeton Univ. Press, 1986. Zbl0604.22001MR855239
  33. [KR] J. Kohn – H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451-472. Zbl0166.33802MR177135
  34. [Leu] E. Leuzinger, Critical exponents of discrete groups and L 2 -spectrum, Proc. Amer. Math. Soc. 132 (2004), 919-927. Zbl1034.22009MR2019974
  35. [Li] P. Li, On the structure of complete Kähler manifolds with nonnegative curvature near infinity, Invent. Math. 99 (1990), 579-600. Zbl0695.53052MR1032881
  36. [LiR] P. Li – M. Ramachandran, Kähler manifolds with almost nonnegative Ricci curvature, Amer. J. Math. 118 (1996), 341-353. Zbl0865.53058MR1385281
  37. [LiW] P. Li – J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), 501-534. Zbl1032.58016MR1906784
  38. [Loh] N. Lohoué, Estimations asymptotiques des noyaux résolvants du laplacien des formes différentielles sur les espaces symétriques de rang un, de type non compact et applications, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), 551-554. Zbl0656.43007MR967359
  39. [LR] N. Lohoué – Th. Rychener, Die Resolvente von Δ auf symmetrischen Räumen vom nichtkompakten Typ, Commun. Math. Helv. 57 (1982), 445-468. Zbl0505.53022MR689073
  40. [Lot] J. Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom. 35 (1992), 471-510. Zbl0770.58040MR1158345
  41. [Maz] R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), 309-339. Zbl0656.53042MR961517
  42. [MM] R. Mazzeo – R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310. Zbl0636.58034MR916753
  43. [MP] R. Mazzeo – R. S. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. J. 60 (1990), 509-559. Zbl0712.58006MR1047764
  44. [MW] R. Miatello – N. R. Wallach, The resolvent of the Laplacian on locally symmetric spaces, J. Differential Geom. 36 (1992), 663-698. Zbl0766.53044MR1189500
  45. [Mok] N. Mok, Harmonic forms with values in locally constant Hilbert bundles, Proceedings of the Conference in Honor of Jean-Piere Kahane (Orsay, 1993), J. Fourier Anal. Appl. special issue (1995), 433-453. Zbl0891.58001MR1364901
  46. [MSY] N. Mok – Y. T. Siu – S. K. Yeung, Geometric superrigidity, Invent. Math. 113 (1993), 57-83. Zbl0808.53043MR1223224
  47. [Nay] S. Nayatani, Patterson-Sullivan measure and conformally flat metrics, Math. Z. 225 (1997), 115-131. Zbl0868.53024MR1451336
  48. [NR] T. Napier – M. Ramachandran, Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995), 809-851. Zbl0860.53045MR1354291
  49. [Olb1] M. Olbrich, L 2 -invariants of locally symmetric spaces, Doc. Math. 7 (2002), 219-237. Zbl1029.58019MR1938121
  50. [Olb2] M. Olbrich, Cohomology of convex cocompact groups and invariant distributions on limit sets, preprint, Universität Göttingen. Zbl1006.22012
  51. [OT] T. Ohsawa – K. Takegoshi, Hodge spectral sequence on pseudoconvex domains, Math. Z. 197 (1988), 1-12. Zbl0638.32016MR917846
  52. [Pan] P. Pansu, Formules de Matsushima, de Garmland et propriété ( T ) pour les groupes agissant sur des espaces symétriques ou des immeubles, Bull. Soc. Math. France 126 (1998), 107-139. Zbl0933.22009MR1651383
  53. [Pat] S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 241-273. Zbl0336.30005MR450547
  54. [Ped1] E. Pedon, Analyse harmonique des formes différentielles sur l’espace hyperbolique réel, Thèse, Université de Nancy-I, 1997. 
  55. [Ped2] E. Pedon, Analyse harmonique des formes différentielles sur l’espace hyperbolique réel I. Transformation de Poisson et fonctions sphériques, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 671-676. Zbl0909.43006MR1641730
  56. [Ped3] E. Pedon, Harmonic analysis for differential forms on complex hyperbolic spaces, J. Geom. Phys. 32 (1999), 102-130. Zbl0935.22010MR1724174
  57. [Ped4] E. Pedon, The differential form spectrum of quaternionic hyperbolic spaces, preprint, Université de Reims, 2004, to appear in Bull. Sci. Math. Zbl1070.22005MR2126824
  58. [Qui1] J.-F. Quint, Mesures de Patterson-Sullivan en rang supérieur, Geom. Funct. Anal. 12 (2002), 776-809. Zbl1169.22300MR1935549
  59. [Qui2] J.-F. Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002), 563-608. Zbl1010.22018MR1933790
  60. [RS] M. Reed – B. Simon, “Methods of Modern Mathematical Physics”, Vol. IV, Analysis of Operators, Academic Press, 1979. 
  61. [Sha] Y. Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2) 152 (2000), 113-182. Zbl0970.22011MR1792293
  62. [SS] Z. Shen – C. Sormani, The codimension one homology of a complete manifold with nonnegative Ricci curvature, Amer. J. Math. 123 (2001), 515-524. Zbl1024.53027MR1833151
  63. [Sul1] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171-202. Zbl0439.30034MR556586
  64. [Sul2] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), 327-351. Zbl0615.53029MR882827
  65. [Var] N. Varopoulos, Small time Gaussian estimates of heat diffusion kernels I. The semi-group technique, Bull. Sci. Math. 113 (1989), 253-277. Zbl0703.58052MR1016211
  66. [VZ] D. A. Vogan – G. J. Zuckerman, Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51-90. Zbl0692.22008MR762307
  67. [Wal] N. R. Wallach, “Harmonic Analysis on Homogeneous Spaces”, Dekker, 1973. Zbl0265.22022MR498996
  68. [Wan1] X. Wang, On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001), 671-688. Zbl1053.53030MR1879811
  69. [Wan2] X. Wang, On the L 2 -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), 311-327. Zbl1221.58023MR1944573
  70. [Yeg] N. Yeganefar, Sur la L 2 -cohomologie des variétés à courbure négative, Duke Math. J. 122 (2004), 145-180. Zbl1069.58013MR2046810
  71. [Yue] C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc. 348 (1996), 4965-5005. Zbl0864.58047MR1348871

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.