Le problème de Pompeiu

Robert Dalmasso

Séminaire de théorie spectrale et géométrie (1998-1999)

  • Volume: 17, page 69-79
  • ISSN: 1624-5458

How to cite

top

Dalmasso, Robert. "Le problème de Pompeiu." Séminaire de théorie spectrale et géométrie 17 (1998-1999): 69-79. <http://eudml.org/doc/114436>.

@article{Dalmasso1998-1999,
author = {Dalmasso, Robert},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Pompeiu's problem},
language = {fre},
pages = {69-79},
publisher = {Institut Fourier},
title = {Le problème de Pompeiu},
url = {http://eudml.org/doc/114436},
volume = {17},
year = {1998-1999},
}

TY - JOUR
AU - Dalmasso, Robert
TI - Le problème de Pompeiu
JO - Séminaire de théorie spectrale et géométrie
PY - 1998-1999
PB - Institut Fourier
VL - 17
SP - 69
EP - 79
LA - fre
KW - Pompeiu's problem
UR - http://eudml.org/doc/114436
ER -

References

top
  1. [1] C.A. BERENSTEIN. - An inverse spectral theorem and its relation to the Pompeiu problem, J. Anal. Math.37 ( 1980), 128-144. Zbl0449.35024MR583635
  2. [2] C.A. BERENSTEIN and D. KHAVINSON. - Do solid tori have the Pompeiu property?, Expo. Math.15 ( 1997), 87-93. Zbl0879.31001MR1438437
  3. [3] C.A. BERENSTEIN and P. YANG. - An inverse Neumann problem, J. Reine Angew. Math. 382 ( 1987), 1-21. Zbl0623.35078MR921163
  4. [4] L. BROWN and J.P. KAHANE. - A note on the Pompeiu problem for convex domains, Math. Ann. 259 ( 1982), 107-110. Zbl0464.30035MR656655
  5. [5] L. BROWN, B.M. SCHREIBER and B.A. TAVLOR. - Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 ( 1973). 125-154. Zbl0265.46044MR352492
  6. [6] CHR. CHRISTOV. - Uber eine Integraleigenschaft der Funktionen von zwei Argumenten, Annuaire Univ. Sofia Fac. Phys.-Math., Livre 1, 39 ( 1943). 395-408. Zbl0063.00889MR31981
  7. [7] CHR. CHRISTOV. - Sur un problème de M. Pompeiu, Mathematica (Timisoara) 23 ( 1948), 103-107. Zbl0031.01503MR25522
  8. [8] CHR. CHRISTOV. - Sur l'équation intégrale généralisée de M. Pompeiu, Annuaire Univ. Sofia Fac. Sci., Livre 1 45 ( 1949). 167-178. MR39019
  9. [9] R. DALMASSO. - A new result on the Pompeiu problem, Trans. Amer. Math. Soc, (à paraitre). Zbl0940.35145MR1694284
  10. [10] R. DALMASSO. - A note on the Schiffer conjecture, Hokkaido Math. J.28 ( 1999). 373-383. Zbl0931.35042MR1698430
  11. [11] P. EBENFELT. - Singularities of solutions to a certain Cauchy problem and an application to the Pompeiu problem, Duke Math. J. 71 ( 1993). 119-142. Zbl0797.35129MR1230288
  12. [12] P. EBENFELT. - Some results on the Pompeiu problem, Ann. Acad. Sci. Fennicae 18 ( 1993), 323-391. Zbl0793.30034MR1234737
  13. [13] R. EBENFELT. - Propagation of singularities from singular and infinite points in certain analytic Cauchy problems and an application to the Pompeiu problem, Duke Math. J.73 ( 1994). 561-582. Zbl0833.35004MR1262927
  14. [14] H. FLANDERS. - A proof of Minkowski's inequality for convex curves, Amer. Math. Monthly 75 ( 1968), 581-593. Zbl0162.25803MR233287
  15. [15] N. GAROFALO and F. SEGALA. - New results on the Pompeiu problem, Trans. Amer. Math. Soc. 325-1 ( 1991), 273-286. Zbl0737.35147MR994165
  16. [16] N. GAROFALO and F. SEGALA. - Another step toward the solution of the Pompeiu problem in the plane, Commun, in Partial Differential Equations 18 ( 1993), 491-503. Zbl0818.35136MR1214869
  17. [17] N. GAROFALO and F. SEGALA. - Univalent functions and the Pompeiu problem, Trans. Amer. Math. Soc.346 ( 1994). 137-146. Zbl0823.30027MR1250819
  18. [18] L. ILIEFF. - Beitrag zum Problem von D. Pompeiu, Annuaire Univ. Sofia Fac. Phys.-Math., Livre 1, 44 ( 1948), 309-316. Zbl0039.28901MR37341
  19. [19] L. ILIEFF. - Sur un problème de M.D. Pompeiu, Annuaire Univ. Sofia Fac. Sci., Livre 1, 45 ( 1949), 111-114. Zbl0039.28902MR39020
  20. [20] G. JOHNSSON. - The Cauchy problem in Cn for linear second order partial differential equations with data on a quadric surface, Trans. Amer. Math. Soc.344 ( 1994), 1-48. Zbl0806.35003MR1242782
  21. [21] P. PUCCI and J. SERRIN. - A general variational identity, Indiana Univ. Math. J.35 ( 1986), 681-703. Zbl0625.35027MR855181
  22. [22] WILLIAMS. - A partial solution to the Pompeiu problem, Math. Ann. 223-2 ( 1976), 183-190. Zbl0329.35045MR414904
  23. [23] WILLIAMS. - Analycity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J.30 ( 1981), 357-369. Zbl0439.35046MR611225
  24. [24] S.T. YAU. - Problem Section, in Seminar on Differential Geometry, edited S. T. Yau, Annals of Math. Studies, Princeton, N.J, 1982. Zbl0479.53001MR645728
  25. [25] L. ZALCMAN. - Offbeat integral geometry, Amer. Math. Monthly 87 ( 1980), 161-175. Zbl0433.53048MR562919
  26. [26] L. ZALCMAN. - A bibliographic survey of the Pompeiu problem, in Approximation by solutions of partial differential equations B. Fuglede et al. (eds.) Kluwer Acad. Publ. ( 1992), 185-194. Zbl0830.26005MR1168719

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.