Déterminant relatif et la fonction Xi
Séminaire de théorie spectrale et géométrie (1999-2000)
- Volume: 18, page 119-124
- ISSN: 1624-5458
Access Full Article
topHow to cite
topCarron, Gilles. "Déterminant relatif et la fonction Xi." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 119-124. <http://eudml.org/doc/114441>.
@article{Carron1999-2000,
author = {Carron, Gilles},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {relative determinant; spectral shift function},
language = {fre},
pages = {119-124},
publisher = {Institut Fourier},
title = {Déterminant relatif et la fonction Xi},
url = {http://eudml.org/doc/114441},
volume = {18},
year = {1999-2000},
}
TY - JOUR
AU - Carron, Gilles
TI - Déterminant relatif et la fonction Xi
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 119
EP - 124
LA - fre
KW - relative determinant; spectral shift function
UR - http://eudml.org/doc/114441
ER -
References
top- [BK] M.SH BIRMAN, M.G. KREIN, on the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 ( 1962), 475-478 ; traduction anglaise in Soviet. Math. Dokl, 3 ( 1962). Zbl0196.45004MR139007
- [B-Y] M.SH BIRMAN, D.R. YAFAEV, The spectral shift fonction, the work of M.G. Krein and its further development, St. Petersburg Math. J., 4 ( 1993), no 5, 833-870. Zbl0791.47013MR1202723
- [B] U. BUNKE, Relative Index theory, J. Funct. Anal, 105 ( 1992), 63-76. Zbl0762.58026MR1156670
- [B-F-K] D. BURGHELEA, L. FRIEDLANDER, T. KAPPELER, Mayer-Vietoris formula for determinants of elliptic operators, J. Funct. Anal, 107 ( 1992) 34-65. Zbl0759.58043MR1165865
- [Bu] V.S. BUSLAEV, Scattered plane waves, spectral asymptotics and trace formulae in exterior problems. Dokl Akad. Nauk SSSR 197 ( 1971) 999-1002 ; traduction anglaise Soviet Math. Dokl, 12 ( 1971),591 -595]. Zbl0224.47023MR278108
- [C-Z] T. CHRISTIANSEN, M. ZWORSKI, Spectral asymptotics for manifolds with cylindrical ends, Ann. Inst. Fourier (Grenoble),45, ( 1995), 251-263. Zbl0818.58046MR1324132
- [C1] T. CHRISTIANSEN, Spectral asymptotics for compactly supported perturbations of the Laplacian on Rn, Comm. Partial Differential Equations, 23 ( 1998), n° 5-6, 933-948. Zbl0912.35115MR1632784
- [C2] T. CHRISTIANSEN, Weyl asymptotics for the laplacian on asymtoticalty euclidean spaces, American J. of Math., 121 ( 1999),1-22. Zbl0924.58006MR1704995
- [CdV] Y. COLIN DE VERDIÈRE, Une formule de trace pour l'opérateur de Schrödinger dans R3, Ann. Sci.École Norm. Sup., 4 ( 1981), 27-39. Zbl0482.35068MR618729
- [F] R. FORMAN, Functional determinants and geometry, Invent. Math., 88 ( 1987) 447-493. Zbl0602.58044MR884797
- [Gu] L. GUILLOPÉ, Asymptotique de la phase de diffusion pour l'opérateur de Schrödinger avec potentiel. C. R. Acad. Sci. Paris Sér. 1 Math., 293 ( 1981), n° 12, 601-603. Zbl0487.35073MR647691
- [G-Z] L. GUILLOPÉ, M. ZWORSKI, Scattering asymptotics for Riemann surfaces, Ann. of Math., 145 ( 1997), 597-660. Zbl0898.58054MR1454705
- [H-Z] A. HASSELL, S. ZELDITCH, Determinants of laplacians in exterior domains, IMRN, ( 1999), n° 18, pp 971-1004. Zbl0941.58020MR1722360
- [J-K] A. JENSEN, T. KATO, Asymptotics behaviour of the scattering phase for exterior domains, Comm. Partial Differential Equations, 3 ( 1978), 1165-1195. Zbl0419.35067MR512084
- [K1] M.G. KRON, On the trace formula in perturbation theory, Mat. Sb., 75 ( 1953), 597-626. MR60742
- [K2] M.G. KREIN, On perturbation determinants and the trace formula for unitary andselfadjoint operators. Dokl. Akad. Nauk SSSR 144 ( 1962), 268-271 ; traduction anglaise in Soviet. Math. Dokl., 3 ( 1962). Zbl0191.15201MR139006
- [L-S] S. LEVIT, U. SMIIANSKY, A theorem on infinité products of eigenvalues of Sturm type operators, Proc. Amer. Math. Soc., 65, ( 1977), 299-303. Zbl0374.34016MR457836
- [M-R] A. MAJDA, J. RALSTON, An analogue of Weyl's theorem for unbounded domains, I, II, III, Duke Math. J., 45 ( 1978), 183-196, 513-536; 46 ( 1979), n° 4,725-731. Zbl0416.35058MR552522
- [Me] R. MELROSE, Weyl asymptotics for the phase in obstacle scattering, Comm. Partial Differential Equations, 13 ( 1988), 1431-1439. Zbl0686.35089MR956828
- [Mu 1] W. MÜLLER, Spectral geometry and scattering theory for certain complete surfaces offinite volume, Invent. Math., 109, ( 1992), 265-305. Zbl0772.58063MR1172692
- [Mu 2] W. MÜLLER, Relative zeta functions, relative determinants and scattering theory, Comm. Math. Phys., 192 ( 1998), n° 2, 309-347 Zbl0947.58025MR1617554
- [P1] L. B. PARNOVSKI, Spectral asymptotics of the Laplace operator on manifolds with cylindrical ends. Internat. J. Math., 6 ( 1995), n° 6, 911-920. Zbl0842.58074MR1354001
- [P2] L.B. PARNOVSKI, Spectral asymptotics of Laplace operators on surfaces with cusps. Math. Ann., 303 ( 1995), n° 2, 281-296. Zbl0849.35093MR1348800
- [P-P] V. PETKOV, G. POPOV, Asymptotic behavior of the scattering phase for non-trapping obstacles, Ann. Inst. Fourier (Grenoble), 32 ( 1982), 111-149. Zbl0476.35014MR688023
- [R-S] D.B. RAY, I.M. SINGER, R-torsion and the Laplacian on Riemannian manifolds. Advances in Math., 7 ( 1971), 145-210. Zbl0239.58014MR295381
- [R] D. ROBERT, Sur la formule de Weyls pour les ouverts non-bornés, C. R. Acad. Sci. Paris Sér. I Math., 319 ( 1994), 29-34. Zbl0809.47045MR1285893
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.