Déterminant relatif et la fonction Xi

Gilles Carron

Séminaire de théorie spectrale et géométrie (1999-2000)

  • Volume: 18, page 119-124
  • ISSN: 1624-5458

How to cite

top

Carron, Gilles. "Déterminant relatif et la fonction Xi." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 119-124. <http://eudml.org/doc/114441>.

@article{Carron1999-2000,
author = {Carron, Gilles},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {relative determinant; spectral shift function},
language = {fre},
pages = {119-124},
publisher = {Institut Fourier},
title = {Déterminant relatif et la fonction Xi},
url = {http://eudml.org/doc/114441},
volume = {18},
year = {1999-2000},
}

TY - JOUR
AU - Carron, Gilles
TI - Déterminant relatif et la fonction Xi
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 119
EP - 124
LA - fre
KW - relative determinant; spectral shift function
UR - http://eudml.org/doc/114441
ER -

References

top
  1. [BK] M.SH BIRMAN, M.G. KREIN, on the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 ( 1962), 475-478 ; traduction anglaise in Soviet. Math. Dokl, 3 ( 1962). Zbl0196.45004MR139007
  2. [B-Y] M.SH BIRMAN, D.R. YAFAEV, The spectral shift fonction, the work of M.G. Krein and its further development, St. Petersburg Math. J., 4 ( 1993), no 5, 833-870. Zbl0791.47013MR1202723
  3. [B] U. BUNKE, Relative Index theory, J. Funct. Anal, 105 ( 1992), 63-76. Zbl0762.58026MR1156670
  4. [B-F-K] D. BURGHELEA, L. FRIEDLANDER, T. KAPPELER, Mayer-Vietoris formula for determinants of elliptic operators, J. Funct. Anal, 107 ( 1992) 34-65. Zbl0759.58043MR1165865
  5. [Bu] V.S. BUSLAEV, Scattered plane waves, spectral asymptotics and trace formulae in exterior problems. Dokl Akad. Nauk SSSR 197 ( 1971) 999-1002 ; traduction anglaise Soviet Math. Dokl, 12 ( 1971),591 -595]. Zbl0224.47023MR278108
  6. [C-Z] T. CHRISTIANSEN, M. ZWORSKI, Spectral asymptotics for manifolds with cylindrical ends, Ann. Inst. Fourier (Grenoble),45, ( 1995), 251-263. Zbl0818.58046MR1324132
  7. [C1] T. CHRISTIANSEN, Spectral asymptotics for compactly supported perturbations of the Laplacian on Rn, Comm. Partial Differential Equations, 23 ( 1998), n° 5-6, 933-948. Zbl0912.35115MR1632784
  8. [C2] T. CHRISTIANSEN, Weyl asymptotics for the laplacian on asymtoticalty euclidean spaces, American J. of Math., 121 ( 1999),1-22. Zbl0924.58006MR1704995
  9. [CdV] Y. COLIN DE VERDIÈRE, Une formule de trace pour l'opérateur de Schrödinger dans R3, Ann. Sci.École Norm. Sup., 4 ( 1981), 27-39. Zbl0482.35068MR618729
  10. [F] R. FORMAN, Functional determinants and geometry, Invent. Math., 88 ( 1987) 447-493. Zbl0602.58044MR884797
  11. [Gu] L. GUILLOPÉ, Asymptotique de la phase de diffusion pour l'opérateur de Schrödinger avec potentiel. C. R. Acad. Sci. Paris Sér. 1 Math., 293 ( 1981), n° 12, 601-603. Zbl0487.35073MR647691
  12. [G-Z] L. GUILLOPÉ, M. ZWORSKI, Scattering asymptotics for Riemann surfaces, Ann. of Math., 145 ( 1997), 597-660. Zbl0898.58054MR1454705
  13. [H-Z] A. HASSELL, S. ZELDITCH, Determinants of laplacians in exterior domains, IMRN, ( 1999), n° 18, pp 971-1004. Zbl0941.58020MR1722360
  14. [J-K] A. JENSEN, T. KATO, Asymptotics behaviour of the scattering phase for exterior domains, Comm. Partial Differential Equations, 3 ( 1978), 1165-1195. Zbl0419.35067MR512084
  15. [K1] M.G. KRON, On the trace formula in perturbation theory, Mat. Sb., 75 ( 1953), 597-626. MR60742
  16. [K2] M.G. KREIN, On perturbation determinants and the trace formula for unitary andselfadjoint operators. Dokl. Akad. Nauk SSSR 144 ( 1962), 268-271 ; traduction anglaise in Soviet. Math. Dokl., 3 ( 1962). Zbl0191.15201MR139006
  17. [L-S] S. LEVIT, U. SMIIANSKY, A theorem on infinité products of eigenvalues of Sturm type operators, Proc. Amer. Math. Soc., 65, ( 1977), 299-303. Zbl0374.34016MR457836
  18. [M-R] A. MAJDA, J. RALSTON, An analogue of Weyl's theorem for unbounded domains, I, II, III, Duke Math. J., 45 ( 1978), 183-196, 513-536; 46 ( 1979), n° 4,725-731. Zbl0416.35058MR552522
  19. [Me] R. MELROSE, Weyl asymptotics for the phase in obstacle scattering, Comm. Partial Differential Equations, 13 ( 1988), 1431-1439. Zbl0686.35089MR956828
  20. [Mu 1] W. MÜLLER, Spectral geometry and scattering theory for certain complete surfaces offinite volume, Invent. Math., 109, ( 1992), 265-305. Zbl0772.58063MR1172692
  21. [Mu 2] W. MÜLLER, Relative zeta functions, relative determinants and scattering theory, Comm. Math. Phys., 192 ( 1998), n° 2, 309-347 Zbl0947.58025MR1617554
  22. [P1] L. B. PARNOVSKI, Spectral asymptotics of the Laplace operator on manifolds with cylindrical ends. Internat. J. Math., 6 ( 1995), n° 6, 911-920. Zbl0842.58074MR1354001
  23. [P2] L.B. PARNOVSKI, Spectral asymptotics of Laplace operators on surfaces with cusps. Math. Ann., 303 ( 1995), n° 2, 281-296. Zbl0849.35093MR1348800
  24. [P-P] V. PETKOV, G. POPOV, Asymptotic behavior of the scattering phase for non-trapping obstacles, Ann. Inst. Fourier (Grenoble), 32 ( 1982), 111-149. Zbl0476.35014MR688023
  25. [R-S] D.B. RAY, I.M. SINGER, R-torsion and the Laplacian on Riemannian manifolds. Advances in Math., 7 ( 1971), 145-210. Zbl0239.58014MR295381
  26. [R] D. ROBERT, Sur la formule de Weyls pour les ouverts non-bornés, C. R. Acad. Sci. Paris Sér. I Math., 319 ( 1994), 29-34. Zbl0809.47045MR1285893

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.