Flat vector bundles and analytic torsion forms
Séminaire de théorie spectrale et géométrie (2000-2001)
- Volume: 19, page 25-40
- ISSN: 1624-5458
Access Full Article
topHow to cite
topMa, Xiaonan. "Flat vector bundles and analytic torsion forms." Séminaire de théorie spectrale et géométrie 19 (2000-2001): 25-40. <http://eudml.org/doc/114456>.
@article{Ma2000-2001,
author = {Ma, Xiaonan},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Reidemeister torsion; analytic torsion forms; flat vector bundles; survey},
language = {eng},
pages = {25-40},
publisher = {Institut Fourier},
title = {Flat vector bundles and analytic torsion forms},
url = {http://eudml.org/doc/114456},
volume = {19},
year = {2000-2001},
}
TY - JOUR
AU - Ma, Xiaonan
TI - Flat vector bundles and analytic torsion forms
JO - Séminaire de théorie spectrale et géométrie
PY - 2000-2001
PB - Institut Fourier
VL - 19
SP - 25
EP - 40
LA - eng
KW - Reidemeister torsion; analytic torsion forms; flat vector bundles; survey
UR - http://eudml.org/doc/114456
ER -
References
top- [1] BERLINE N., GETZLER E. and VERGNE M., Heat kernels and the Dirac operator, Grundl. Math. Wiss. 298, Springer, Berlin-Heidelberg-New York 1992. Zbl0744.58001MR1215720
- [2] BISMUT J.-M., The index Theorem for families of Dirac operators: two heat equation proofs, Invent. Malh., 83 ( 1986), 91-151. Zbl0592.58047MR813584
- [3] BISMUT J.-M., Families of immersions, and higher analytic torsion, Astérisque 244, 1997. Zbl0899.32013MR1623496
- [4] BISMUT J.-M. and GOETTE S., Families torsion and Morse fonctions, Astérisque 275, 2001. Zbl1071.58025MR1867006
- [5] BISMUT J.-M. and LEBEAU G., Complex immersions and Quillen metrics, Publ. Math. IHES., Vol. 74, 1991, 1-297. Zbl0784.32010MR1188532
- [6] BISMUT J.-M. and LOTT J., Flat vector bundles, direct images and higher real analytic torsion, J.A.M.S. 8 ( 1995), 291-363. Zbl0837.58028MR1303026
- [7] BISMUT J.-M. and ZHANG W., An extension of a Theorem by Cheeger and Müller, Astérisque 205, 1992. Zbl0781.58039MR1185803
- [8] BUNKE U., On the functoriality of Lott's secondary analytic index, math. DG/0003171. Zbl1007.58017
- [9] CHEEGER J., Analytic torsion and the Heat Equation, Ann of Math, 109 ( 1979), 259-322. Zbl0412.58026MR528965
- [10] DAI X., Geometric Invariants and Their Adiabatic Limits, Proc. Symposia Pure Math. 54 ( 1993), part II, 145-156. Zbl0792.58036MR1216534
- [11] DAI X., Melrose R.B., Adiabatic limit of the analytic torsion, Preprint.
- [12] DWYER W., WEISS M., WILLIAMS B., A Parametrized Index Theorem for the Algebraic K-Theory Euler Class, http://www.math.uiuc.edu/K-theory/0086/index.html. Zbl1077.19002
- [13] FRANZ W., Uber die Torsion einer überdeckrung, J. Reine Angew. Math. 173 ( 1935), 245-254. Zbl0012.12702
- [14] GRIFFITHS P., HARRIS J., Principles of Algebraic Geometry, New-York, Wiley 1978. Zbl0408.14001MR507725
- [15] GROTHENDIECK A., Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9, 1957, 119-221. Zbl0118.26104MR102537
- [16] IGUSA K., Parametrized Morse theory and its applications. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 643-651, Math. Soc. Japan, Tokyo, 1991. Zbl0755.58016MR1159251
- [17] KLEIN J., Higher Franz-Reidemeister torsion: low-dimensional applications. Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), 195-204, Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993. Zbl0790.19006MR1234265
- [18] KNUDSEN P.F., MUMFORD D., The projectivity of the moduli space of stable curves. I, Preliminaries on "det" and "div", Math. Scand. 39 ( 1976), 19-55. Zbl0343.14008MR437541
- [19] KÖHLER K., Equivariant Reidemeister torsion on symmetric spaces, Math. Ann. 307 ( 1997), 57-69. Zbl0869.58053MR1427675
- [20] LOTT J., Secondary analytic indices, Regulars in analysis, Geometry and Number Theory. N.Schappacher, A Reznikov(ed), Progress in Math. 171. Birkhäuse 2000. Zbl1071.58019MR1724894
- [21] LÜCK W., SCHICK T., and THIELMANN T., Torsion and fibrations, J. Reine Angew. Math, 498 ( 1998), 1-33. Zbl0912.58044MR1629917
- [22] MA X., Formes de torsion analytique et familles de submersions I, Bull. Soc. Math. France, 127 ( 1999), 541 -621. Zbl0956.58017MR1765553
- [23] MA X., Formes de torsion analytique et familles de submersions II, Asian J of Math, 4 ( 2000), 633-668. Zbl0971.58019MR1796698
- [24] MA X., Functoriality of real analytic torsion forms. Israel J of Math, to appear. Zbl1042.58019MR1942300
- [25] MILNOR J., Whitehead torsion. Bull. Amer. Math. Soc. 72 1966 358-426. Zbl0147.23104MR196736
- [26] MULLER W., Analytic torsion and R-torsion of Riemannian manifolds. Adv. in Math. 28 ( 1978), 233-305. Zbl0395.57011MR498252
- [27] MULLER W., Analytic torsion and R-torsion for unimodular representations, J.A.M.S, 6 ( 1993), 721-753. Zbl0789.58071MR1189689
- [28] RAY D.B., Singer I.M., R-torsion and the Laplacian on Riemannian Manifolds, Adv. in Math, 7 ( 1971), 145-210. Zbl0239.58014MR295381
- [29] REIDEMEISTER K., Homotopieringe und Linsenraüm, Hamburger Abhandl, 11 ( 1935), 102-109. JFM61.1352.01
- [30] DE RHAM G., Complexes à automorphismes et homéomorphie différentiable. Ann. Inst. Fourier Grenoble 2 ( 1950), 51-67 ( 1951). Zbl0043.17601MR43468
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.