Flat vector bundles and analytic torsion forms

Xiaonan Ma

Séminaire de théorie spectrale et géométrie (2000-2001)

  • Volume: 19, page 25-40
  • ISSN: 1624-5458

How to cite

top

Ma, Xiaonan. "Flat vector bundles and analytic torsion forms." Séminaire de théorie spectrale et géométrie 19 (2000-2001): 25-40. <http://eudml.org/doc/114456>.

@article{Ma2000-2001,
author = {Ma, Xiaonan},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Reidemeister torsion; analytic torsion forms; flat vector bundles; survey},
language = {eng},
pages = {25-40},
publisher = {Institut Fourier},
title = {Flat vector bundles and analytic torsion forms},
url = {http://eudml.org/doc/114456},
volume = {19},
year = {2000-2001},
}

TY - JOUR
AU - Ma, Xiaonan
TI - Flat vector bundles and analytic torsion forms
JO - Séminaire de théorie spectrale et géométrie
PY - 2000-2001
PB - Institut Fourier
VL - 19
SP - 25
EP - 40
LA - eng
KW - Reidemeister torsion; analytic torsion forms; flat vector bundles; survey
UR - http://eudml.org/doc/114456
ER -

References

top
  1. [1] BERLINE N., GETZLER E. and VERGNE M., Heat kernels and the Dirac operator, Grundl. Math. Wiss. 298, Springer, Berlin-Heidelberg-New York 1992. Zbl0744.58001MR1215720
  2. [2] BISMUT J.-M., The index Theorem for families of Dirac operators: two heat equation proofs, Invent. Malh., 83 ( 1986), 91-151. Zbl0592.58047MR813584
  3. [3] BISMUT J.-M., Families of immersions, and higher analytic torsion, Astérisque 244, 1997. Zbl0899.32013MR1623496
  4. [4] BISMUT J.-M. and GOETTE S., Families torsion and Morse fonctions, Astérisque 275, 2001. Zbl1071.58025MR1867006
  5. [5] BISMUT J.-M. and LEBEAU G., Complex immersions and Quillen metrics, Publ. Math. IHES., Vol. 74, 1991, 1-297. Zbl0784.32010MR1188532
  6. [6] BISMUT J.-M. and LOTT J., Flat vector bundles, direct images and higher real analytic torsion, J.A.M.S. 8 ( 1995), 291-363. Zbl0837.58028MR1303026
  7. [7] BISMUT J.-M. and ZHANG W., An extension of a Theorem by Cheeger and Müller, Astérisque 205, 1992. Zbl0781.58039MR1185803
  8. [8] BUNKE U., On the functoriality of Lott's secondary analytic index, math. DG/0003171. Zbl1007.58017
  9. [9] CHEEGER J., Analytic torsion and the Heat Equation, Ann of Math, 109 ( 1979), 259-322. Zbl0412.58026MR528965
  10. [10] DAI X., Geometric Invariants and Their Adiabatic Limits, Proc. Symposia Pure Math. 54 ( 1993), part II, 145-156. Zbl0792.58036MR1216534
  11. [11] DAI X., Melrose R.B., Adiabatic limit of the analytic torsion, Preprint. 
  12. [12] DWYER W., WEISS M., WILLIAMS B., A Parametrized Index Theorem for the Algebraic K-Theory Euler Class, http://www.math.uiuc.edu/K-theory/0086/index.html. Zbl1077.19002
  13. [13] FRANZ W., Uber die Torsion einer überdeckrung, J. Reine Angew. Math. 173 ( 1935), 245-254. Zbl0012.12702
  14. [14] GRIFFITHS P., HARRIS J., Principles of Algebraic Geometry, New-York, Wiley 1978. Zbl0408.14001MR507725
  15. [15] GROTHENDIECK A., Sur quelques points d'algèbre homologique, Tôhoku Math. J. 9, 1957, 119-221. Zbl0118.26104MR102537
  16. [16] IGUSA K., Parametrized Morse theory and its applications. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 643-651, Math. Soc. Japan, Tokyo, 1991. Zbl0755.58016MR1159251
  17. [17] KLEIN J., Higher Franz-Reidemeister torsion: low-dimensional applications. Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), 195-204, Contemp. Math., 150, Amer. Math. Soc., Providence, RI, 1993. Zbl0790.19006MR1234265
  18. [18] KNUDSEN P.F., MUMFORD D., The projectivity of the moduli space of stable curves. I, Preliminaries on "det" and "div", Math. Scand. 39 ( 1976), 19-55. Zbl0343.14008MR437541
  19. [19] KÖHLER K., Equivariant Reidemeister torsion on symmetric spaces, Math. Ann. 307 ( 1997), 57-69. Zbl0869.58053MR1427675
  20. [20] LOTT J., Secondary analytic indices, Regulars in analysis, Geometry and Number Theory. N.Schappacher, A Reznikov(ed), Progress in Math. 171. Birkhäuse 2000. Zbl1071.58019MR1724894
  21. [21] LÜCK W., SCHICK T., and THIELMANN T., Torsion and fibrations, J. Reine Angew. Math, 498 ( 1998), 1-33. Zbl0912.58044MR1629917
  22. [22] MA X., Formes de torsion analytique et familles de submersions I, Bull. Soc. Math. France, 127 ( 1999), 541 -621. Zbl0956.58017MR1765553
  23. [23] MA X., Formes de torsion analytique et familles de submersions II, Asian J of Math, 4 ( 2000), 633-668. Zbl0971.58019MR1796698
  24. [24] MA X., Functoriality of real analytic torsion forms. Israel J of Math, to appear. Zbl1042.58019MR1942300
  25. [25] MILNOR J., Whitehead torsion. Bull. Amer. Math. Soc. 72 1966 358-426. Zbl0147.23104MR196736
  26. [26] MULLER W., Analytic torsion and R-torsion of Riemannian manifolds. Adv. in Math. 28 ( 1978), 233-305. Zbl0395.57011MR498252
  27. [27] MULLER W., Analytic torsion and R-torsion for unimodular representations, J.A.M.S, 6 ( 1993), 721-753. Zbl0789.58071MR1189689
  28. [28] RAY D.B., Singer I.M., R-torsion and the Laplacian on Riemannian Manifolds, Adv. in Math, 7 ( 1971), 145-210. Zbl0239.58014MR295381
  29. [29] REIDEMEISTER K., Homotopieringe und Linsenraüm, Hamburger Abhandl, 11 ( 1935), 102-109. JFM61.1352.01
  30. [30] DE RHAM G., Complexes à automorphismes et homéomorphie différentiable. Ann. Inst. Fourier Grenoble 2 ( 1950), 51-67 ( 1951). Zbl0043.17601MR43468

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.