Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes

Laurent Bessières

Séminaire de théorie spectrale et géométrie (2000-2001)

  • Volume: 19, page 77-91
  • ISSN: 1624-5458

How to cite

top

Bessières, Laurent. "Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes." Séminaire de théorie spectrale et géométrie 19 (2000-2001): 77-91. <http://eudml.org/doc/114460>.

@article{Bessières2000-2001,
author = {Bessières, Laurent},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {complexity; algorithm; Riemannian manifold; diameter functional},
language = {fre},
pages = {77-91},
publisher = {Institut Fourier},
title = {Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes},
url = {http://eudml.org/doc/114460},
volume = {19},
year = {2000-2001},
}

TY - JOUR
AU - Bessières, Laurent
TI - Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes
JO - Séminaire de théorie spectrale et géométrie
PY - 2000-2001
PB - Institut Fourier
VL - 19
SP - 77
EP - 91
LA - fre
KW - complexity; algorithm; Riemannian manifold; diameter functional
UR - http://eudml.org/doc/114460
ER -

References

top
  1. [Bar] J.M. BARZDIN, Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set, Soviet Math. Dokl., 9 ( 1968), 1251-1254. Zbl0193.31601
  2. [BMR] J. BEMELMANS, M. MIN-OO, E. RUH, Smoothing riemannian metrics, Math. Z., 188 ( 1984), 69-74. Zbl0536.53044MR767363
  3. [Cha] I. CHAVEL, Riemannian geometry :a modem introduction, Cambridge University Press, 1995. Zbl0819.53001MR2229062
  4. [Che] J. CHEEGER, Finiteness theorems for riemannian manifolds, Amer. J.Math., 92 ( 1970), 61-74 . Zbl0194.52902MR263092
  5. [D] M. DAVIS, Computability and unsolvability, Dover Publications, New York 1982. Zbl0553.03024
  6. [F] K. FUKAYA, Hausdorff con vergence of riemannian manifolds and its applications, in "Recent topics in differential and analytic geometry", ed. T. Ochiai, Adv. Stud. Pure Math. 18-I, Academic Press, Boston, 1990. Zbl0754.53004MR1145256
  7. [NW] A. NABUTOVSKY, S. WEINBERGER, Variational problems for Riemannian Functionals and arithmetic group, à paraître aux Publications Math, de l'IHES. Zbl1003.58007
  8. [GLP] M. GROMOV, J. LAFONTAINE, P. PANSU, Structure métrique pour les variétés riemanniennes, 1981. Zbl0509.53034
  9. [G] M. GROMOV, Volume and bounded cohomology. Publications Math, de l'IHES, 56 ( 1982), 5-99. Zbl0516.53046MR686042
  10. [P] S. PETERS, Convergence of Riemannian manifolds, Comp. Math., 62 ( 1987), 3-16. Zbl0618.53036MR892147
  11. [R] J.J. ROTMAN, Introduction to the theory of groups, Springer, 1995. Zbl0810.20001MR1307623
  12. [ZL] A.K. ZVONKIN, L.A. LEVIN, The complexity of finite objecst and the development of the concepts of information and randomness by means of the theory of the algorithms, Russ. Math. Surv. 25(6) ( 1970), 83-129. Zbl0222.02027MR307889

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.