Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes
Séminaire de théorie spectrale et géométrie (2000-2001)
- Volume: 19, page 77-91
- ISSN: 1624-5458
Access Full Article
topHow to cite
topBessières, Laurent. "Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes." Séminaire de théorie spectrale et géométrie 19 (2000-2001): 77-91. <http://eudml.org/doc/114460>.
@article{Bessières2000-2001,
author = {Bessières, Laurent},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {complexity; algorithm; Riemannian manifold; diameter functional},
language = {fre},
pages = {77-91},
publisher = {Institut Fourier},
title = {Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes},
url = {http://eudml.org/doc/114460},
volume = {19},
year = {2000-2001},
}
TY - JOUR
AU - Bessières, Laurent
TI - Les travaux de Nabutovsky et Weinberger sur la complexité de l'espace des variétés riemanniennes
JO - Séminaire de théorie spectrale et géométrie
PY - 2000-2001
PB - Institut Fourier
VL - 19
SP - 77
EP - 91
LA - fre
KW - complexity; algorithm; Riemannian manifold; diameter functional
UR - http://eudml.org/doc/114460
ER -
References
top- [Bar] J.M. BARZDIN, Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set, Soviet Math. Dokl., 9 ( 1968), 1251-1254. Zbl0193.31601
- [BMR] J. BEMELMANS, M. MIN-OO, E. RUH, Smoothing riemannian metrics, Math. Z., 188 ( 1984), 69-74. Zbl0536.53044MR767363
- [Cha] I. CHAVEL, Riemannian geometry :a modem introduction, Cambridge University Press, 1995. Zbl0819.53001MR2229062
- [Che] J. CHEEGER, Finiteness theorems for riemannian manifolds, Amer. J.Math., 92 ( 1970), 61-74 . Zbl0194.52902MR263092
- [D] M. DAVIS, Computability and unsolvability, Dover Publications, New York 1982. Zbl0553.03024
- [F] K. FUKAYA, Hausdorff con vergence of riemannian manifolds and its applications, in "Recent topics in differential and analytic geometry", ed. T. Ochiai, Adv. Stud. Pure Math. 18-I, Academic Press, Boston, 1990. Zbl0754.53004MR1145256
- [NW] A. NABUTOVSKY, S. WEINBERGER, Variational problems for Riemannian Functionals and arithmetic group, à paraître aux Publications Math, de l'IHES. Zbl1003.58007
- [GLP] M. GROMOV, J. LAFONTAINE, P. PANSU, Structure métrique pour les variétés riemanniennes, 1981. Zbl0509.53034
- [G] M. GROMOV, Volume and bounded cohomology. Publications Math, de l'IHES, 56 ( 1982), 5-99. Zbl0516.53046MR686042
- [P] S. PETERS, Convergence of Riemannian manifolds, Comp. Math., 62 ( 1987), 3-16. Zbl0618.53036MR892147
- [R] J.J. ROTMAN, Introduction to the theory of groups, Springer, 1995. Zbl0810.20001MR1307623
- [ZL] A.K. ZVONKIN, L.A. LEVIN, The complexity of finite objecst and the development of the concepts of information and randomness by means of the theory of the algorithms, Russ. Math. Surv. 25(6) ( 1970), 83-129. Zbl0222.02027MR307889
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.