Nonlinear Maps between Besov and Sobolev spaces
Philip Brenner[1]; Peter Kumlin[2]
- [1] IT-university of Göteborg, University of Gothenburg and Chalmers University of Technology SE-412 96 Göteborg Sweden
- [2] Mathematical Sciences, University of Gothenburg and Chalmers University of Technology SE-412 96 Göteborg Sweden
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 1, page 105-120
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topBrenner, Philip, and Kumlin, Peter. "Nonlinear Maps between Besov and Sobolev spaces." Annales de la faculté des sciences de Toulouse Mathématiques 19.1 (2010): 105-120. <http://eudml.org/doc/115841>.
@article{Brenner2010,
abstract = {Our main result shows that for a large class of nonlinear local mappings between Besov and Sobolev space, interpolation is an exceptional low dimensional phenomenon. This extends previous results by Kumlin [13] from the case of analytic mappings to Lipschitz and Hölder continuous maps (Corollaries 1 and 2), and which go back to ideas of the late B.E.J. Dahlberg [8].},
affiliation = {IT-university of Göteborg, University of Gothenburg and Chalmers University of Technology SE-412 96 Göteborg Sweden; Mathematical Sciences, University of Gothenburg and Chalmers University of Technology SE-412 96 Göteborg Sweden},
author = {Brenner, Philip, Kumlin, Peter},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {1},
number = {1},
pages = {105-120},
publisher = {Université Paul Sabatier, Toulouse},
title = {Nonlinear Maps between Besov and Sobolev spaces},
url = {http://eudml.org/doc/115841},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Brenner, Philip
AU - Kumlin, Peter
TI - Nonlinear Maps between Besov and Sobolev spaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/1//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 1
SP - 105
EP - 120
AB - Our main result shows that for a large class of nonlinear local mappings between Besov and Sobolev space, interpolation is an exceptional low dimensional phenomenon. This extends previous results by Kumlin [13] from the case of analytic mappings to Lipschitz and Hölder continuous maps (Corollaries 1 and 2), and which go back to ideas of the late B.E.J. Dahlberg [8].
LA - eng
UR - http://eudml.org/doc/115841
ER -
References
top- Bahouri (H.), Gerard (P.).— High frequency approximation of solutions to critical nonlinear equations, Amer. J. Math.121, p. 131-175 (1999). Zbl0919.35089MR1705001
- Bennet (C.), Sharpley (R.).— Interpolation of operators, Academic Press 1988. Zbl0647.46057MR928802
- Bergh (J.), Löfström (J.).— Interpolation spaces, Springer Verlag (1976). Zbl0344.46071
- Bourdaud (G.), Moussai (M.), Sickel (W.).— Towards sharp superposition theorems in Besov and Lizorkin-Triebel spaces, Nonlinear Analysis, (2007), doi: 10.1016/j.na.2007.02.035 Zbl1149.46026MR2404807
- Brenner (P.).— Space-time means and nonlinear Klein-Gordon Equations, Report, Department of Mathematics, Chalmers University of Technology, p. 1985-19.
- Brenner (P.), Kumlin (P.).— On wave equations with supercritical nonlinearities, Arch. Math.74, p. 139-147 (2000). Zbl0971.35051MR1735230
- Brenner (P.), Thomée (V.), Wahlbin (L.B.).— Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Math. 434, Springer Verlag (1975). Zbl0294.35002MR461121
- Dahlberg (B.E.J.).— A note on Sobolev spaces, Proc. Symposia in Pure Math. XXV, p. 183-185, AMS (1979). Zbl0421.46027MR545257
- Gagliardo (E.).— Ulteriori Properta di alcune classi di funzioni in plui variabili, Ric. Mat., 8, 24-51 (1959). Zbl0199.44701MR109295
- Ginibre (J.), Velo (G.).— The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189, p. 487-505 (1985). Zbl0549.35108MR786279
- Heinz (E.), von Wahl (W.).— Zu einem Satz von F E Browder über nichtlinearen Wellengleichungen, Math. Z., 141, p. 33-45 (1975). Zbl0282.35068MR365257
- Hörmander (L.).— Lectures on nonlinear differential equations, Springer Verlag 1997. Zbl0881.35001MR1466700
- Kumlin (P.).— On mapping properties for some nonlinear operators related to hyperbolic problems, Göteborg 1985 (thesis)
- Lebeau (G.).— Perte de régularité pour les équations des ondes sur-critiques, Bull. Soc. Math. France, 133, p. 145-157 , (2005). Zbl1071.35020MR2145023
- Lebeau (G.).— Nonlinear optics and supercritical wave equation, Bull. Soc. Math. Liege, 70, p. 267-306 (2001). Zbl1034.35137MR1813167
- Maligranda (L.).— Interpolation of locally Hölder operators, Studia Math., 78, p. 289-296 (1984). Zbl0566.46039MR782666
- Nirenberg (L.).— On elliptic partial differential equations, Ann. Scu. Norm. Sup. Pisa, 13:3, p. 115-162 (1959). Zbl0088.07601MR109940
- Peetre (J.).— Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj), 12:35, p. 325-334 (1970). Zbl0217.44504MR482280
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.