Loss of regularity for super critical wave equations
Bulletin de la Société Mathématique de France (2005)
- Volume: 133, Issue: 1, page 145-157
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Brenner & W. von Wahl – « Global classical solutions of non-linear wave equations », Math. Z.176 (1981), p. 87–121. Zbl0457.35059MR606174
- [2] J. Ginibre & G. Velo – « The global Cauchy problem for the non linear Klein-Gordon equation », Math.Z.189 (1985), p. 487–505. Zbl0549.35108MR786279
- [3] H. Hochstadt – « On the Determination of a Hill’s Equation from its Spectrum », Arch. Rat. Mech. Anal.19 (1965), p. 353–362. Zbl0128.31201MR181792
- [4] K. Jörgens – « Das Anfangswertproblem in Grossen fur eine Klasse nichtlinearer Wellingleichungen », Math. Z.77 (1961), p. 295–308. Zbl0111.09105MR130462
- [5] G. Lebeau – « Non linear optic and supercritical wave equation », Bull. Soc. Math. Liège70 (2001), p. 267–306. Zbl1034.35137MR1904059
- [6] J.-L. Lions – Quelques méthodes de résolution des problèmes aux limites non-linéaires, Dunod Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [7] I. Segal – « The Global Cauchy Problem for a Relativistic Scalar Field with Power Interaction », Bull. Soc. Math. France91 (1963), p. 129–135. Zbl0178.45403MR153967
- [8] J. Shatah & M. Struwe – « Well-Posedness in the Energy Space for Semilinear Wave Equation with Critical Growth », I.M.R.N.7 (1994), p. 303–309. Zbl0830.35086MR1283026
- [9] W. Strauss – « Nonlinear invariant wave equations », Invariant wave equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977), Lecture Notes in Phys., vol. 73, Springer, 1978, p. 197–249. MR498955