Ahlfors’ currents in higher dimension

Henry de Thélin[1]

  • [1] Université Paris-Sud (Paris 11) Mathématique, Bât. 425 91405 Orsay France.

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 1, page 121-133
  • ISSN: 0240-2963

Abstract

top
We consider a nondegenerate holomorphic map f : V X where ( X , ω ) is a compact Hermitian manifold of dimension larger than or equal to k and V is an open connected complex manifold of dimension k . In this article we give criteria which permit to construct Ahlfors’ currents in X .

How to cite

top

de Thélin, Henry. "Ahlfors’ currents in higher dimension." Annales de la faculté des sciences de Toulouse Mathématiques 19.1 (2010): 121-133. <http://eudml.org/doc/115855>.

@article{deThélin2010,
abstract = {We consider a nondegenerate holomorphic map $f: V \mapsto X$ where $(X, \omega )$ is a compact Hermitian manifold of dimension larger than or equal to $k$ and $V$ is an open connected complex manifold of dimension $k$. In this article we give criteria which permit to construct Ahlfors’ currents in $X$.},
affiliation = {Université Paris-Sud (Paris 11) Mathématique, Bât. 425 91405 Orsay France.},
author = {de Thélin, Henry},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Ahlfors currents; mapping degree},
language = {eng},
month = {1},
number = {1},
pages = {121-133},
publisher = {Université Paul Sabatier, Toulouse},
title = {Ahlfors’ currents in higher dimension},
url = {http://eudml.org/doc/115855},
volume = {19},
year = {2010},
}

TY - JOUR
AU - de Thélin, Henry
TI - Ahlfors’ currents in higher dimension
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/1//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 1
SP - 121
EP - 133
AB - We consider a nondegenerate holomorphic map $f: V \mapsto X$ where $(X, \omega )$ is a compact Hermitian manifold of dimension larger than or equal to $k$ and $V$ is an open connected complex manifold of dimension $k$. In this article we give criteria which permit to construct Ahlfors’ currents in $X$.
LA - eng
KW - Ahlfors currents; mapping degree
UR - http://eudml.org/doc/115855
ER -

References

top
  1. Brunella (M.).— Courbes entières et feuilletages holomorphes, Enseign. Math., 45, p. 195-216 (1999). Zbl1004.32011MR1703368
  2. Carlson (J.A.) and Griffiths (P.).— The order functions for entire holomorphic mappings, Proc. Tulane Univ. Program, p. 225-248 (1974). Zbl0289.32017MR404699
  3. Chern (S.-S.).— The integrated form of the first main theorem for complex analytic mappings in several complex variables, Ann. of Math. (2), 71, p. 536-551 (1960). Zbl0142.04802MR125979
  4. Chirka (E.M.).— Complex analytic sets, Kluwer Academic Publishers (1989). Zbl0683.32002MR1111477
  5. Demailly (J.-P.).— Complex analytic and algebraic geometry, http://www-fourier.ujf-grenoble.fr/ demailly/books.html, 1997. 
  6. Duval (J.).— Singularités des courants d’Ahlfors, Ann. Sci. Ecole Norm. Sup., 39, p. 527-533 (2006). Zbl1243.32012MR2265678
  7. Griffiths (P.).— Some remarks on Nevanlinna theory, Proc. Tulane Univ. Program, p. 1-11 (1974). Zbl0288.32018MR352545
  8. Hirschfelder (J.J.).— The first main theorem of value distribution in several variables, Invent. Math., 8, p. 1-33 (1969). Zbl0175.37103MR245840
  9. Lang (S.).— Introduction to complex hyperbolic spaces, Springer-Verlag (1987). Zbl0628.32001MR886677
  10. McQuillan (M.).— Diophantine approximations and foliations, Inst. Hautes Etudes Sci. Publ. Math., 87, p. 121-174 (1998). Zbl1006.32020MR1659270
  11. Range (R.M.).— Holomorphic functions and integral representations in several complex variables, Springer-Verlag (1986). Zbl0591.32002MR847923
  12. Sibony (N.) and Wong (P.M.).— Some remarks on the Casorati-Weierstrass theorem, Ann. Polon. Math., 39, p. 165-174 (1981). Zbl0476.32005MR617458
  13. Stoll (W.).— A general first main theorem of value distribution, Acta Math., 118, p. 111-191 (1967). Zbl0148.31905MR217339
  14. Wu (H.).— Remarks on the first main theorem in equidistribution theory II, J. Differential Geometry, 2, p. 369-384 (1968). Zbl0177.11301MR276501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.