Ahlfors’ currents in higher dimension
- [1] Université Paris-Sud (Paris 11) Mathématique, Bât. 425 91405 Orsay France.
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 1, page 121-133
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topde Thélin, Henry. "Ahlfors’ currents in higher dimension." Annales de la faculté des sciences de Toulouse Mathématiques 19.1 (2010): 121-133. <http://eudml.org/doc/115855>.
@article{deThélin2010,
abstract = {We consider a nondegenerate holomorphic map $f: V \mapsto X$ where $(X, \omega )$ is a compact Hermitian manifold of dimension larger than or equal to $k$ and $V$ is an open connected complex manifold of dimension $k$. In this article we give criteria which permit to construct Ahlfors’ currents in $X$.},
affiliation = {Université Paris-Sud (Paris 11) Mathématique, Bât. 425 91405 Orsay France.},
author = {de Thélin, Henry},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Ahlfors currents; mapping degree},
language = {eng},
month = {1},
number = {1},
pages = {121-133},
publisher = {Université Paul Sabatier, Toulouse},
title = {Ahlfors’ currents in higher dimension},
url = {http://eudml.org/doc/115855},
volume = {19},
year = {2010},
}
TY - JOUR
AU - de Thélin, Henry
TI - Ahlfors’ currents in higher dimension
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/1//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 1
SP - 121
EP - 133
AB - We consider a nondegenerate holomorphic map $f: V \mapsto X$ where $(X, \omega )$ is a compact Hermitian manifold of dimension larger than or equal to $k$ and $V$ is an open connected complex manifold of dimension $k$. In this article we give criteria which permit to construct Ahlfors’ currents in $X$.
LA - eng
KW - Ahlfors currents; mapping degree
UR - http://eudml.org/doc/115855
ER -
References
top- Brunella (M.).— Courbes entières et feuilletages holomorphes, Enseign. Math., 45, p. 195-216 (1999). Zbl1004.32011MR1703368
- Carlson (J.A.) and Griffiths (P.).— The order functions for entire holomorphic mappings, Proc. Tulane Univ. Program, p. 225-248 (1974). Zbl0289.32017MR404699
- Chern (S.-S.).— The integrated form of the first main theorem for complex analytic mappings in several complex variables, Ann. of Math. (2), 71, p. 536-551 (1960). Zbl0142.04802MR125979
- Chirka (E.M.).— Complex analytic sets, Kluwer Academic Publishers (1989). Zbl0683.32002MR1111477
- Demailly (J.-P.).— Complex analytic and algebraic geometry, http://www-fourier.ujf-grenoble.fr/demailly/books.html, 1997.
- Duval (J.).— Singularités des courants d’Ahlfors, Ann. Sci. Ecole Norm. Sup., 39, p. 527-533 (2006). Zbl1243.32012MR2265678
- Griffiths (P.).— Some remarks on Nevanlinna theory, Proc. Tulane Univ. Program, p. 1-11 (1974). Zbl0288.32018MR352545
- Hirschfelder (J.J.).— The first main theorem of value distribution in several variables, Invent. Math., 8, p. 1-33 (1969). Zbl0175.37103MR245840
- Lang (S.).— Introduction to complex hyperbolic spaces, Springer-Verlag (1987). Zbl0628.32001MR886677
- McQuillan (M.).— Diophantine approximations and foliations, Inst. Hautes Etudes Sci. Publ. Math., 87, p. 121-174 (1998). Zbl1006.32020MR1659270
- Range (R.M.).— Holomorphic functions and integral representations in several complex variables, Springer-Verlag (1986). Zbl0591.32002MR847923
- Sibony (N.) and Wong (P.M.).— Some remarks on the Casorati-Weierstrass theorem, Ann. Polon. Math., 39, p. 165-174 (1981). Zbl0476.32005MR617458
- Stoll (W.).— A general first main theorem of value distribution, Acta Math., 118, p. 111-191 (1967). Zbl0148.31905MR217339
- Wu (H.).— Remarks on the first main theorem in equidistribution theory II, J. Differential Geometry, 2, p. 369-384 (1968). Zbl0177.11301MR276501
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.