Limit currents and value distribution of holomorphic maps
Daniel Burns[1]; Nessim Sibony[2]
- [1] University of Michigan Department of Mathematics Ann Arbor MI 48109 (USA)
- [2] Université Paris-Sud Département Mathématiques UMR 8628 91405 Orsay (France)
Annales de l’institut Fourier (2012)
- Volume: 62, Issue: 1, page 145-176
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBurns, Daniel, and Sibony, Nessim. "Limit currents and value distribution of holomorphic maps." Annales de l’institut Fourier 62.1 (2012): 145-176. <http://eudml.org/doc/251089>.
@article{Burns2012,
abstract = {We construct $d$-closed and $dd^c$-closed positive currents associated to a holomorphic map $\phi $ via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor MI 48109 (USA); Université Paris-Sud Département Mathématiques UMR 8628 91405 Orsay (France)},
author = {Burns, Daniel, Sibony, Nessim},
journal = {Annales de l’institut Fourier},
keywords = {Ahlfors currents; Brody’s theorem; value distribution theory; equidistribution; Brody's theorem},
language = {eng},
number = {1},
pages = {145-176},
publisher = {Association des Annales de l’institut Fourier},
title = {Limit currents and value distribution of holomorphic maps},
url = {http://eudml.org/doc/251089},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Burns, Daniel
AU - Sibony, Nessim
TI - Limit currents and value distribution of holomorphic maps
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 145
EP - 176
AB - We construct $d$-closed and $dd^c$-closed positive currents associated to a holomorphic map $\phi $ via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.
LA - eng
KW - Ahlfors currents; Brody’s theorem; value distribution theory; equidistribution; Brody's theorem
UR - http://eudml.org/doc/251089
ER -
References
top- Lars V. Ahlfors, Leo Sario, Riemann surfaces, (1960), Princeton University Press, Princeton, N.J. Zbl0196.33801MR114911
- Errett Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964), 289-304 Zbl0143.30302MR168801
- James A. Carlson, A moving lemma for the transcendental Bezout problem, Ann. of Math. (2) 103 (1976), 305-330 Zbl0321.32008MR409901
- Shiing-shen Chern, On holomorphic mappings of hermitian manifolds of the same dimension., Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) (1968), 157-170, Amer. Math. Soc., Providence, R.I. Zbl0184.31202MR234397
- Tien-Cuong Dinh, Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), 221-258 Zbl1094.32005MR2208805
- Tien-Cuong Dinh, Nessim Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math. 203 (2009), 1-82 Zbl1227.32024MR2545825
- Tien-Cuong Dinh, Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems 1998 (2010), 165-294, Springer, Berlin Zbl1218.37055MR2648690
- J. E. Fornæss, N. Sibony, Harmonic currents of finite energy and laminations, Geom. Funct. Anal. 15 (2005), 962-1003 Zbl1115.32020MR2221156
- Phillip Griffiths, James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145-220 Zbl0258.32009MR427690
- Phillip A. Griffiths, Entire holomorphic mappings in one and several complex variables, (1976), Princeton University Press, Princeton, N. J. Zbl0317.32023MR447638
- Lawrence Gruman, The area of analytic varieties in , Math. Scand. 41 (1977), 365-397 Zbl0376.32008MR477126
- Lawrence Gruman, La géométrie globale des ensembles analytiques dans , Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French) 822 (1980), 90-99, Springer, Berlin Zbl0446.32007MR599020
- W. K. Hayman, Meromorphic functions, (1964), Clarendon Press, Oxford Zbl0115.06203MR164038
- Anatole Katok, Boris Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press, Cambridge Zbl0878.58019MR1326374
- Michael McQuillan, Diophantine approximations and foliations, Inst. Hautes Études Sci. Publ. Math. (1998), 121-174 Zbl1006.32020MR1659270
- Robert E. Molzon, Bernard Shiffman, Nessim Sibony, Average growth estimates for hyperplane sections of entire analytic sets, Math. Ann. 257 (1981), 43-59 Zbl0537.32009MR630646
- B. V. Shabat, Raspredelenie znachenii golomorfnykh otobrazhenii, (1982), “Nauka”, Moscow Zbl0537.32008MR701119
- Nessim Sibony, Dynamique des applications rationnelles de , Dynamique et géométrie complexes (Lyon, 1997) 8 (1999), ix-x, xi–xii, 97–185, Soc. Math. France, Paris Zbl1020.37026MR1760844
- Wilhelm Stoll, The growth of the area of a transcendental analytic set. I, II, Math. Ann. 156 (1964), 144-170 Zbl0126.09502MR166393
- Wilhelm Stoll, Value distribution on parabolic spaces, (1977), Springer-Verlag, Berlin Zbl0367.32001MR590436
- Henry de Thélin, Ahlfors’ currents in higher dimension, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), 121-133 Zbl1195.32004MR2597784
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.