Limit currents and value distribution of holomorphic maps

Daniel Burns[1]; Nessim Sibony[2]

  • [1] University of Michigan Department of Mathematics Ann Arbor MI 48109 (USA)
  • [2] Université Paris-Sud Département Mathématiques UMR 8628 91405 Orsay (France)

Annales de l’institut Fourier (2012)

  • Volume: 62, Issue: 1, page 145-176
  • ISSN: 0373-0956

Abstract

top
We construct d -closed and d d c -closed positive currents associated to a holomorphic map φ via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.

How to cite

top

Burns, Daniel, and Sibony, Nessim. "Limit currents and value distribution of holomorphic maps." Annales de l’institut Fourier 62.1 (2012): 145-176. <http://eudml.org/doc/251089>.

@article{Burns2012,
abstract = {We construct $d$-closed and $dd^c$-closed positive currents associated to a holomorphic map $\phi $ via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor MI 48109 (USA); Université Paris-Sud Département Mathématiques UMR 8628 91405 Orsay (France)},
author = {Burns, Daniel, Sibony, Nessim},
journal = {Annales de l’institut Fourier},
keywords = {Ahlfors currents; Brody’s theorem; value distribution theory; equidistribution; Brody's theorem},
language = {eng},
number = {1},
pages = {145-176},
publisher = {Association des Annales de l’institut Fourier},
title = {Limit currents and value distribution of holomorphic maps},
url = {http://eudml.org/doc/251089},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Burns, Daniel
AU - Sibony, Nessim
TI - Limit currents and value distribution of holomorphic maps
JO - Annales de l’institut Fourier
PY - 2012
PB - Association des Annales de l’institut Fourier
VL - 62
IS - 1
SP - 145
EP - 176
AB - We construct $d$-closed and $dd^c$-closed positive currents associated to a holomorphic map $\phi $ via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.
LA - eng
KW - Ahlfors currents; Brody’s theorem; value distribution theory; equidistribution; Brody's theorem
UR - http://eudml.org/doc/251089
ER -

References

top
  1. Lars V. Ahlfors, Leo Sario, Riemann surfaces, (1960), Princeton University Press, Princeton, N.J. Zbl0196.33801MR114911
  2. Errett Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964), 289-304 Zbl0143.30302MR168801
  3. James A. Carlson, A moving lemma for the transcendental Bezout problem, Ann. of Math. (2) 103 (1976), 305-330 Zbl0321.32008MR409901
  4. Shiing-shen Chern, On holomorphic mappings of hermitian manifolds of the same dimension., Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) (1968), 157-170, Amer. Math. Soc., Providence, R.I. Zbl0184.31202MR234397
  5. Tien-Cuong Dinh, Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), 221-258 Zbl1094.32005MR2208805
  6. Tien-Cuong Dinh, Nessim Sibony, Super-potentials of positive closed currents, intersection theory and dynamics, Acta Math. 203 (2009), 1-82 Zbl1227.32024MR2545825
  7. Tien-Cuong Dinh, Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems 1998 (2010), 165-294, Springer, Berlin Zbl1218.37055MR2648690
  8. J. E. Fornæss, N. Sibony, Harmonic currents of finite energy and laminations, Geom. Funct. Anal. 15 (2005), 962-1003 Zbl1115.32020MR2221156
  9. Phillip Griffiths, James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145-220 Zbl0258.32009MR427690
  10. Phillip A. Griffiths, Entire holomorphic mappings in one and several complex variables, (1976), Princeton University Press, Princeton, N. J. Zbl0317.32023MR447638
  11. Lawrence Gruman, The area of analytic varieties in n , Math. Scand. 41 (1977), 365-397 Zbl0376.32008MR477126
  12. Lawrence Gruman, La géométrie globale des ensembles analytiques dans n , Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French) 822 (1980), 90-99, Springer, Berlin Zbl0446.32007MR599020
  13. W. K. Hayman, Meromorphic functions, (1964), Clarendon Press, Oxford Zbl0115.06203MR164038
  14. Anatole Katok, Boris Hasselblatt, Introduction to the modern theory of dynamical systems, 54 (1995), Cambridge University Press, Cambridge Zbl0878.58019MR1326374
  15. Michael McQuillan, Diophantine approximations and foliations, Inst. Hautes Études Sci. Publ. Math. (1998), 121-174 Zbl1006.32020MR1659270
  16. Robert E. Molzon, Bernard Shiffman, Nessim Sibony, Average growth estimates for hyperplane sections of entire analytic sets, Math. Ann. 257 (1981), 43-59 Zbl0537.32009MR630646
  17. B. V. Shabat, Raspredelenie znachenii golomorfnykh otobrazhenii, (1982), “Nauka”, Moscow Zbl0537.32008MR701119
  18. Nessim Sibony, Dynamique des applications rationnelles de k , Dynamique et géométrie complexes (Lyon, 1997) 8 (1999), ix-x, xi–xii, 97–185, Soc. Math. France, Paris Zbl1020.37026MR1760844
  19. Wilhelm Stoll, The growth of the area of a transcendental analytic set. I, II, Math. Ann. 156 (1964), 144-170 Zbl0126.09502MR166393
  20. Wilhelm Stoll, Value distribution on parabolic spaces, (1977), Springer-Verlag, Berlin Zbl0367.32001MR590436
  21. Henry de Thélin, Ahlfors’ currents in higher dimension, Ann. Fac. Sci. Toulouse Math. (6) 19 (2010), 121-133 Zbl1195.32004MR2597784

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.