Page 1 Next

Displaying 1 – 20 of 100

Showing per page

A new division formula for complete intersections

Mikael Passare (1991)

Annales Polonici Mathematici

We provide a new division formula for holomorphic mappings. It is given in terms of residue currents and has the advantage of being more explicit and simpler to prove than the previously known formulas.

A remark on Nilsson type integrals

Nguyen Minh, Bogdan Ziemian (1996)

Banach Center Publications

We investigate ramification properties with respect to parameters of integrals (distributions) of a class of singular functions over an unbounded cycle which may intersect the singularities of the integrand. We generalize the classical result of Nilsson dealing with the case where the cycle is bounded and contained in the set of holomorphy of the integrand. Such problems arise naturally in the study of exponential representation at infinity of solutions to certain PDE's (see [Z]).

Ahlfors’ currents in higher dimension

Henry de Thélin (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider a nondegenerate holomorphic map f : V X where ( X , ω ) is a compact Hermitian manifold of dimension larger than or equal to k and V is an open connected complex manifold of dimension k . In this article we give criteria which permit to construct Ahlfors’ currents in X .

Caractérisations des zéros des fonctions de certaines classes de type Nevanlinna dans le bidisque

Philippe Charpentier (1984)

Annales de l'institut Fourier

Dans cet article, nous étudions les zéros des fonctions holomorphes dans le bidisque dont le logarithme du module vérifie une condition de croissance : nous caractérisons par une condition de type Blaschke les zéros des fonctions vérifiant D 2 δ D 2 ( z ) α log + | f ( z ) | d λ ( z ) < , pour α > - 1 , et nous donnons les conditions suffisantes pour des classes plus petites, en particulier pour la classe de Nevanlinna du bidisque.

Currently displaying 1 – 20 of 100

Page 1 Next