A rigidity phenomenon for germs of actions of R 2

Aubin Arroyo[1]; Adolfo Guillot[1]

  • [1] Instituto de Matemáticas, Unidad Cuernavaca Universidad Nacional Autónoma de México, A.P. 273-3 Admon. 3, Cuernavaca, Morelos, 62251 México

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 539-565
  • ISSN: 0240-2963

Abstract

top
We study germs of Lie algebras generated by two commuting vector fields in manifolds that are maximal in the sense of Palais (those which do not present any evident obstruction to be the local model of an action of  R 2 ). We study three particular pairs of homogeneous quadratic commuting vector fields (in  R 2 , R 3 and  R 4 ) and study the maximal Lie algebras generated by commuting vector fields whose 2-jets at the origin are the given homogeneous ones. In the first case we prove that the quadratic algebra is a smooth normal form. In the second and third ones, we prove that the orbit structure is, from a topological viewpoint, the one of the quadratic part.

How to cite

top

Arroyo, Aubin, and Guillot, Adolfo. "A rigidity phenomenon for germs of actions of ${\bf R}^2$." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 539-565. <http://eudml.org/doc/115860>.

@article{Arroyo2010,
abstract = {We study germs of Lie algebras generated by two commuting vector fields in manifolds that are maximal in the sense of Palais (those which do not present any evident obstruction to be the local model of an action of $\{\bf R\}^2$). We study three particular pairs of homogeneous quadratic commuting vector fields (in $\{\bf R\}^2$, $\{\bf R\}^3$ and $\{\bf R\}^4$) and study the maximal Lie algebras generated by commuting vector fields whose 2-jets at the origin are the given homogeneous ones. In the first case we prove that the quadratic algebra is a smooth normal form. In the second and third ones, we prove that the orbit structure is, from a topological viewpoint, the one of the quadratic part.},
affiliation = {Instituto de Matemáticas, Unidad Cuernavaca Universidad Nacional Autónoma de México, A.P. 273-3 Admon. 3, Cuernavaca, Morelos, 62251 México; Instituto de Matemáticas, Unidad Cuernavaca Universidad Nacional Autónoma de México, A.P. 273-3 Admon. 3, Cuernavaca, Morelos, 62251 México},
author = {Arroyo, Aubin, Guillot, Adolfo},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Lie algebra; commuting vector fields},
language = {eng},
number = {3-4},
pages = {539-565},
publisher = {Université Paul Sabatier, Toulouse},
title = {A rigidity phenomenon for germs of actions of $\{\bf R\}^2$},
url = {http://eudml.org/doc/115860},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Arroyo, Aubin
AU - Guillot, Adolfo
TI - A rigidity phenomenon for germs of actions of ${\bf R}^2$
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 539
EP - 565
AB - We study germs of Lie algebras generated by two commuting vector fields in manifolds that are maximal in the sense of Palais (those which do not present any evident obstruction to be the local model of an action of ${\bf R}^2$). We study three particular pairs of homogeneous quadratic commuting vector fields (in ${\bf R}^2$, ${\bf R}^3$ and ${\bf R}^4$) and study the maximal Lie algebras generated by commuting vector fields whose 2-jets at the origin are the given homogeneous ones. In the first case we prove that the quadratic algebra is a smooth normal form. In the second and third ones, we prove that the orbit structure is, from a topological viewpoint, the one of the quadratic part.
LA - eng
KW - Lie algebra; commuting vector fields
UR - http://eudml.org/doc/115860
ER -

References

top
  1. Dumortier (F.) and Roussarie (R.).— Smooth linearization of germs of R 2 -actions and holomorphic vector fields. Ann. Inst. Fourier (Grenoble), Vol. 30 no. 1, p. 31-64 (1980). Zbl0418.58015MR576072
  2. Ghys (E.) and Rebelo (J.-C.).— Singularités des flots holomorphes. II. Ann. Inst. Fourier (Grenoble), Vol. 47 no. 4, p. 1117-1174 (1997). Zbl0938.32019MR1488247
  3. Guillot (A.).— Sur les exemples de Lins Neto de feuilletages algébriques. C. R. Math. Acad. Sci. Paris, Vol. 334 no. 9, p. 747-750 (2002). Zbl1004.37029MR1905033
  4. Palais (R. S.).— A global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc., 22 (1957). Zbl0178.26502MR121424
  5. Palis (J.) and de Melo (W.).— Introdução aos sistemas dinâmicos, volume 6 of Projeto Euclides. Instituto de Matemática Pura e Aplicada, Rio de Janeiro (1978). Zbl0507.58001
  6. Rebelo (J. C.).— Singularités des flots holomorphes. Ann. Inst. Fourier (Grenoble), Vol. 46 no. 2, p. 411-428 (1996). Zbl0853.34002MR1393520
  7. Rebelo (J. C.).— Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2. Ann. Fac. Sci. Toulouse Math. (6), Vol. 9 no. 4, p. 735-763 (2000). Zbl1002.32025MR1838147
  8. Reis (H.).— Equivalence and semi-completude of foliations. Nonlinear Anal., Vol. 64 no. 8, p. 1654-1665 (2006). Zbl1134.37345MR2197353
  9. Salmon (G.).— A treatise on the higher plane curves. Hodges and Smith, Dublin (1852). 
  10. Spivak (M.).— A comprehensive introduction to differential geometry. Vol. IV. Publish or Perish Inc., Wilmington, Del., second edition (1979). Zbl0439.53004MR532833
  11. Sternberg (S.).— Local contractions and a theorem of Poincaré. Amer. J. Math., Vol. 79: p. 809-824 (1957). Zbl0080.29902MR96853
  12. Thurston (W. P.).— Three-dimensional geometry and topology. Vol. 1. Princeton University Press, Princeton, NJ (1997). Zbl0873.57001MR1435975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.