A remark on the action of the mapping class group on the unit tangent bundle

J. Souto[1]

  • [1] Department of Mathematics, University of Michigan, Ann Arbor

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 589-601
  • ISSN: 0240-2963

Abstract

top
We prove that the standard action of the mapping class group Map ( Σ ) of a surface Σ of sufficiently large genus on the unit tangent bundle T 1 Σ is not homotopic to any smooth action.

How to cite

top

Souto, J.. "A remark on the action of the mapping class group on the unit tangent bundle." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 589-601. <http://eudml.org/doc/115866>.

@article{Souto2010,
abstract = {We prove that the standard action of the mapping class group $\{\rm Map\}(\Sigma )$ of a surface $\Sigma $ of sufficiently large genus on the unit tangent bundle $T^1\Sigma $ is not homotopic to any smooth action.},
affiliation = {Department of Mathematics, University of Michigan, Ann Arbor},
author = {Souto, J.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {mapping class group; Nielsen realization problem},
language = {eng},
number = {3-4},
pages = {589-601},
publisher = {Université Paul Sabatier, Toulouse},
title = {A remark on the action of the mapping class group on the unit tangent bundle},
url = {http://eudml.org/doc/115866},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Souto, J.
TI - A remark on the action of the mapping class group on the unit tangent bundle
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 589
EP - 601
AB - We prove that the standard action of the mapping class group ${\rm Map}(\Sigma )$ of a surface $\Sigma $ of sufficiently large genus on the unit tangent bundle $T^1\Sigma $ is not homotopic to any smooth action.
LA - eng
KW - mapping class group; Nielsen realization problem
UR - http://eudml.org/doc/115866
ER -

References

top
  1. Bestvina (M.), Church (T.) and Souto (J.).— Some groups of mapping classes not realized by diffeomorphisms, preprint (2009). 
  2. Bing (R.).— Inequivalent families of periodic homeomorphisms of E 3 , Ann. of Math. (2) 80 (1964). Zbl0123.16801MR163308
  3. Casson (A.) and Bleiler (S.).— Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9. Cambridge University Press, 1988. Zbl0649.57008MR964685
  4. Deroin (B.), Kleptsyn (V.) and Navas (A.).— Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007), no. 2. Zbl1139.37025MR2358052
  5. Farb (B.) and Margait (D.).— A primer on mapping class groups, to be published by Princeton University Press. 
  6. Farb (B.) and Franks (J.).— Groups of homeomorphisms of one-manifolds, I: Nonlinear group actions, preprint (2001). 
  7. Franks (J.) and Handel (M.).— Global fixed points for centralizers and Morita’s Theorem, Geom. Topol. 13 (2009). Zbl1160.37326MR2469514
  8. Korkmaz (M.).— Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002). Zbl1026.57015MR1892804
  9. Kuusalo (T.).— Boundary mappings of geometric isomorphisms of Fuchsian groups, Ann. Acad. Sci. Fenn. Ser. A I No. 545 (1973). Zbl0272.30023MR342692
  10. Marković (V.).— Realization of the mapping class group by homeomorphisms, Invent. Math. 168 (2007). Zbl1131.57021MR2299561
  11. Meeks (W.) and Scott (P.).— Finite group actions on 3 -manifolds, Invent. Math. 86 (1986). Zbl0626.57006MR856847
  12. Milnor (J.) and Stasheff (J.).— Characteristic classes, Annals of Mathematics Studies, No. 76. Princeton University Press, (1974). Zbl0298.57008MR440554
  13. Morita (S.).— Characteristic classes of surface bundles, Invent. Math. 90 (1987). Zbl0608.57020MR914849
  14. Neumann (W.) and Raymond (F.).— Seifert manifolds, plumbing, μ -invariant and orientation reversing maps, in Algebraic and geometric topology, Lecture Notes in Math., 664, Springer 1978. Zbl0401.57018MR518415
  15. Parwani (K.).— C 1 actions on the mapping class groups on the circle, Algebr. Geom. Topol. 8 (2008). Zbl1155.37028MR2443102
  16. Powell (J.).— Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978). Zbl0391.57009MR494115
  17. Seifert (H.).— Topologie dreidimensionalen gefaserter Räume, Acta Math. 60 (1933). Zbl0006.08304
  18. Sullivan (D.).— Hyperbolic geometry and homeomorphisms, in Proc. Georgia Topology Conf. 1977, Academic Press, 1979. Zbl0478.57007MR537749
  19. Thurston (W.).— A generalization of the Reeb stability theorem, Topology 13 (1974) Zbl0305.57025MR356087
  20. Waldhausen (F.).— On irreducible 3 -manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968). Zbl0157.30603MR224099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.