A remark on the action of the mapping class group on the unit tangent bundle
J. Souto[1]
- [1] Department of Mathematics, University of Michigan, Ann Arbor
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 589-601
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSouto, J.. "A remark on the action of the mapping class group on the unit tangent bundle." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 589-601. <http://eudml.org/doc/115866>.
@article{Souto2010,
abstract = {We prove that the standard action of the mapping class group $\{\rm Map\}(\Sigma )$ of a surface $\Sigma $ of sufficiently large genus on the unit tangent bundle $T^1\Sigma $ is not homotopic to any smooth action.},
affiliation = {Department of Mathematics, University of Michigan, Ann Arbor},
author = {Souto, J.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {mapping class group; Nielsen realization problem},
language = {eng},
number = {3-4},
pages = {589-601},
publisher = {Université Paul Sabatier, Toulouse},
title = {A remark on the action of the mapping class group on the unit tangent bundle},
url = {http://eudml.org/doc/115866},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Souto, J.
TI - A remark on the action of the mapping class group on the unit tangent bundle
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 589
EP - 601
AB - We prove that the standard action of the mapping class group ${\rm Map}(\Sigma )$ of a surface $\Sigma $ of sufficiently large genus on the unit tangent bundle $T^1\Sigma $ is not homotopic to any smooth action.
LA - eng
KW - mapping class group; Nielsen realization problem
UR - http://eudml.org/doc/115866
ER -
References
top- Bestvina (M.), Church (T.) and Souto (J.).— Some groups of mapping classes not realized by diffeomorphisms, preprint (2009).
- Bing (R.).— Inequivalent families of periodic homeomorphisms of , Ann. of Math. (2) 80 (1964). Zbl0123.16801MR163308
- Casson (A.) and Bleiler (S.).— Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9. Cambridge University Press, 1988. Zbl0649.57008MR964685
- Deroin (B.), Kleptsyn (V.) and Navas (A.).— Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007), no. 2. Zbl1139.37025MR2358052
- Farb (B.) and Margait (D.).— A primer on mapping class groups, to be published by Princeton University Press.
- Farb (B.) and Franks (J.).— Groups of homeomorphisms of one-manifolds, I: Nonlinear group actions, preprint (2001).
- Franks (J.) and Handel (M.).— Global fixed points for centralizers and Morita’s Theorem, Geom. Topol. 13 (2009). Zbl1160.37326MR2469514
- Korkmaz (M.).— Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002). Zbl1026.57015MR1892804
- Kuusalo (T.).— Boundary mappings of geometric isomorphisms of Fuchsian groups, Ann. Acad. Sci. Fenn. Ser. A I No. 545 (1973). Zbl0272.30023MR342692
- Marković (V.).— Realization of the mapping class group by homeomorphisms, Invent. Math. 168 (2007). Zbl1131.57021MR2299561
- Meeks (W.) and Scott (P.).— Finite group actions on -manifolds, Invent. Math. 86 (1986). Zbl0626.57006MR856847
- Milnor (J.) and Stasheff (J.).— Characteristic classes, Annals of Mathematics Studies, No. 76. Princeton University Press, (1974). Zbl0298.57008MR440554
- Morita (S.).— Characteristic classes of surface bundles, Invent. Math. 90 (1987). Zbl0608.57020MR914849
- Neumann (W.) and Raymond (F.).— Seifert manifolds, plumbing, -invariant and orientation reversing maps, in Algebraic and geometric topology, Lecture Notes in Math., 664, Springer 1978. Zbl0401.57018MR518415
- Parwani (K.).— actions on the mapping class groups on the circle, Algebr. Geom. Topol. 8 (2008). Zbl1155.37028MR2443102
- Powell (J.).— Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978). Zbl0391.57009MR494115
- Seifert (H.).— Topologie dreidimensionalen gefaserter Räume, Acta Math. 60 (1933). Zbl0006.08304
- Sullivan (D.).— Hyperbolic geometry and homeomorphisms, in Proc. Georgia Topology Conf. 1977, Academic Press, 1979. Zbl0478.57007MR537749
- Thurston (W.).— A generalization of the Reeb stability theorem, Topology 13 (1974) Zbl0305.57025MR356087
- Waldhausen (F.).— On irreducible -manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968). Zbl0157.30603MR224099
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.