On a Special Class of Non Complete Webs

Julien Sebag[1]

  • [1] Université Rennes 1, UFR Mathématiques, IRMAR, 263 avenue du General Leclerc, CS 74205, 35042 Rennes cedex (France)

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 1, page 95-104
  • ISSN: 0240-2963

Abstract

top
In this article, we introduce a special class of non complete webs, the NN-webs. We also study the algebraic and geometric properties of these webs.

How to cite

top

Sebag, Julien. "On a Special Class of Non Complete Webs." Annales de la faculté des sciences de Toulouse Mathématiques 19.1 (2010): 95-104. <http://eudml.org/doc/115871>.

@article{Sebag2010,
abstract = {In this article, we introduce a special class of non complete webs, the NN-webs. We also study the algebraic and geometric properties of these webs.},
affiliation = {Université Rennes 1, UFR Mathématiques, IRMAR, 263 avenue du General Leclerc, CS 74205, 35042 Rennes cedex (France)},
author = {Sebag, Julien},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {(algebraic) -web; not complete web; Legendre transformation},
language = {eng},
month = {1},
number = {1},
pages = {95-104},
publisher = {Université Paul Sabatier, Toulouse},
title = {On a Special Class of Non Complete Webs},
url = {http://eudml.org/doc/115871},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Sebag, Julien
TI - On a Special Class of Non Complete Webs
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/1//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 1
SP - 95
EP - 104
AB - In this article, we introduce a special class of non complete webs, the NN-webs. We also study the algebraic and geometric properties of these webs.
LA - eng
KW - (algebraic) -web; not complete web; Legendre transformation
UR - http://eudml.org/doc/115871
ER -

References

top
  1. Beauville (A.).— Géométrie des tissus [d’après S. S. Chern et P. A. Griffiths], Séminaire Bourbaki (1978/79), Exp. No. 531, p. 103-119, Lecture Notes in Math., 770, Springer, Berlin, (1980). Zbl0436.57008MR572420
  2. Freudenburg (G.).— Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences, 136, Invariant Theory and Algebraic Transformation Groups, VII, Springer-Verlag, Berlin, (2006). Zbl1121.13002MR2259515
  3. Hénaut (A.).— Sur la linéarisation des tissus de C 2 , Topology 32, no. 3, p. 531-542 (1993). Zbl0799.32010MR1231959
  4. Hénaut (A.).— On planar web geometry through abelian relations and connections, Ann. of Math. (2) 159, no. 1, p. 425-445 (2004). Zbl1069.53020MR2052360
  5. Miyanishi (M.).— Vector fields on factorial schemes, J. Algebra 173, no. 1, p. 144-165 (1995). Zbl0835.13006MR1327364
  6. Ripoll (O.).— Géométrie des tissus du plan et équations différentielles, Thèse de doctorat, Université Bordeaux 1, décembre 2005, available on http://tel.archives-ouvertes.fr/tel-00011928. 
  7. Ripoll (O.), Sebag (J.).— Solutions singulières des tissus polynomiaux du plan, J. Algebra 310, no. 1, p. 351-370 (2007). Zbl1141.53013MR2307797
  8. Ripoll (O.), Sebag (J.).— The Cartan-Tresse linearization polynomial and applications, Journal of Algebra, Volume 320, no. 5, p. 1914-1932 (2008). Zbl1154.13009MR2437637
  9. Ripoll (O.), Sebag (J.).— Tissus du plan et polynômes de Darboux, Ann. Fac. Sci. Toulouse, 19, no. 1, p. 1-11 (2010). 
  10. Ripoll (O.), Sebag (J.).— Nilpotent webs, to appear in Journal of Commutative Algebra. Zbl1237.14018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.