An elementary proof of the Briançon-Skoda theorem
- [1] Mathematical Sciences, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg Sweden
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 675-685
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSznajdman, Jacob. "An elementary proof of the Briançon-Skoda theorem." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 675-685. <http://eudml.org/doc/115874>.
@article{Sznajdman2010,
abstract = {We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function $\phi $ belongs to an ideal $I$ of the ring of germs of analytic functions at $0\in \mathbb\{C\}^n$; more precisely, the ideal membership is obtained if a function associated with $\phi $ and $I$ is locally square integrable. If $I$ can be generated by $m$ elements,it follows in particular that $\overline\{I^\{\min (m,n)\}\}\subset I$, where $\overline\{J\}$ denotes the integral closure of an ideal $J$.},
affiliation = {Mathematical Sciences, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg Sweden},
author = {Sznajdman, Jacob},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {germs of holomorphic functions; integral closure; Briançon-Skoda theorem},
language = {eng},
number = {3-4},
pages = {675-685},
publisher = {Université Paul Sabatier, Toulouse},
title = {An elementary proof of the Briançon-Skoda theorem},
url = {http://eudml.org/doc/115874},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Sznajdman, Jacob
TI - An elementary proof of the Briançon-Skoda theorem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 675
EP - 685
AB - We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function $\phi $ belongs to an ideal $I$ of the ring of germs of analytic functions at $0\in \mathbb{C}^n$; more precisely, the ideal membership is obtained if a function associated with $\phi $ and $I$ is locally square integrable. If $I$ can be generated by $m$ elements,it follows in particular that $\overline{I^{\min (m,n)}}\subset I$, where $\overline{J}$ denotes the integral closure of an ideal $J$.
LA - eng
KW - germs of holomorphic functions; integral closure; Briançon-Skoda theorem
UR - http://eudml.org/doc/115874
ER -
References
top- Andersson (M.).— Integral representation with weights I, Math. Ann. 326, p. 1-18 (2003). Zbl1024.32005MR1981609
- Berenstein (C.), Gay (R.), Vidras (A.), Yger (A.).— Residue currents and bezout identities, Progress in Mathematics, 114, Birkhäuser Verlag, Basel (1993). Zbl0802.32001MR1249478
- Berndtsson (B.).— A formula for division and interpolation, Math. Ann. 263, p. 113-160 (1983). Zbl0499.32013MR707239
- Briançon (J.), Skoda (H.).— Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de , C. R. Acad. Sci. Paris Sér. A 278, p. 949-951 (1974). Zbl0307.32007MR340642
- Demailly (J.-P.).— Complex analytic and differential geometry, Available at http://www-fourier.ujf-grenoble.fr/~demailly/ (2007).
- Hörmander (L.).— An introduction to complex analysis in several variables,North-Holland, 0444884467 (1990). Zbl0271.32001MR1045639
- Lejeune-Jalabert (M.), Tessier (B.) and Risler (J.-J.).— Clôture intégrale des idéaux et équisingularité, Ann. Toulouse Sér. 6, 17 no. 4, p. 781-859, available at arXiv:0803.2369 (2008). Zbl1171.13005MR2499856
- Lipman (J.), Tessier (B.).— Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28, p. 97-115 (1981). Zbl0464.13005MR600418
- Schoutens (H.).— A non-standard proof of the Briançon-Skoda theorem, Proc. Amer. Math. Soc. 131, p. 103-112 (2003). Zbl1005.13007MR1929029
- Skoda (H.).— Application des techniques à la théorie des idéaux d’une algébre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5, p. 545-579 (1972). Zbl0254.32017MR333246
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.