An elementary proof of the Briançon-Skoda theorem

Jacob Sznajdman[1]

  • [1] Mathematical Sciences, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg Sweden

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 675-685
  • ISSN: 0240-2963

Abstract

top
We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function φ belongs to an ideal I of the ring of germs of analytic functions at 0 n ; more precisely, the ideal membership is obtained if a function associated with φ and I is locally square integrable. If I can be generated by m elements,it follows in particular that I min ( m , n ) ¯ I , where J ¯ denotes the integral closure of an ideal J .

How to cite

top

Sznajdman, Jacob. "An elementary proof of the Briançon-Skoda theorem." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 675-685. <http://eudml.org/doc/115874>.

@article{Sznajdman2010,
abstract = {We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function $\phi $ belongs to an ideal $I$ of the ring of germs of analytic functions at $0\in \mathbb\{C\}^n$; more precisely, the ideal membership is obtained if a function associated with $\phi $ and $I$ is locally square integrable. If $I$ can be generated by $m$ elements,it follows in particular that $\overline\{I^\{\min (m,n)\}\}\subset I$, where $\overline\{J\}$ denotes the integral closure of an ideal $J$.},
affiliation = {Mathematical Sciences, Chalmers University of Technology and Göteborg University, S-412 96 Göteborg Sweden},
author = {Sznajdman, Jacob},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {germs of holomorphic functions; integral closure; Briançon-Skoda theorem},
language = {eng},
number = {3-4},
pages = {675-685},
publisher = {Université Paul Sabatier, Toulouse},
title = {An elementary proof of the Briançon-Skoda theorem},
url = {http://eudml.org/doc/115874},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Sznajdman, Jacob
TI - An elementary proof of the Briançon-Skoda theorem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 675
EP - 685
AB - We give an elementary proof of the Briançon-Skoda theorem. The theorem gives a criterionfor when a function $\phi $ belongs to an ideal $I$ of the ring of germs of analytic functions at $0\in \mathbb{C}^n$; more precisely, the ideal membership is obtained if a function associated with $\phi $ and $I$ is locally square integrable. If $I$ can be generated by $m$ elements,it follows in particular that $\overline{I^{\min (m,n)}}\subset I$, where $\overline{J}$ denotes the integral closure of an ideal $J$.
LA - eng
KW - germs of holomorphic functions; integral closure; Briançon-Skoda theorem
UR - http://eudml.org/doc/115874
ER -

References

top
  1. Andersson (M.).— Integral representation with weights I, Math. Ann. 326, p. 1-18 (2003). Zbl1024.32005MR1981609
  2. Berenstein (C.), Gay (R.), Vidras (A.), Yger (A.).— Residue currents and bezout identities, Progress in Mathematics, 114, Birkhäuser Verlag, Basel (1993). Zbl0802.32001MR1249478
  3. Berndtsson (B.).— A formula for division and interpolation, Math. Ann. 263, p. 113-160 (1983). Zbl0499.32013MR707239
  4. Briançon (J.), Skoda (H.).— Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de C n , C. R. Acad. Sci. Paris Sér. A 278, p. 949-951 (1974). Zbl0307.32007MR340642
  5. Demailly (J.-P.).— Complex analytic and differential geometry, Available at http://www-fourier.ujf-grenoble.fr/~demailly/ (2007). 
  6. Hörmander (L.).— An introduction to complex analysis in several variables,North-Holland, 0444884467 (1990). Zbl0271.32001MR1045639
  7. Lejeune-Jalabert (M.), Tessier (B.) and Risler (J.-J.).— Clôture intégrale des idéaux et équisingularité, Ann. Toulouse Sér. 6, 17 no. 4, p. 781-859, available at arXiv:0803.2369 (2008). Zbl1171.13005MR2499856
  8. Lipman (J.), Tessier (B.).— Pseudo-rational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28, p. 97-115 (1981). Zbl0464.13005MR600418
  9. Schoutens (H.).— A non-standard proof of the Briançon-Skoda theorem, Proc. Amer. Math. Soc. 131, p. 103-112 (2003). Zbl1005.13007MR1929029
  10. Skoda (H.).— Application des techniques L 2 à la théorie des idéaux d’une algébre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5, p. 545-579 (1972). Zbl0254.32017MR333246

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.