Clôture intégrale des idéaux et équisingularité

Monique Lejeune-Jalabert; Bernard Teissier

Annales de la faculté des sciences de Toulouse Mathématiques (2008)

  • Volume: 17, Issue: 4, page 781-859
  • ISSN: 0240-2963


This text has two parts. The first one is the essentially unmodified text of our 1973-74 seminar on integral dependence in complex analytic geometry at the Ecole Polytechnique with J-J. Risler’s appendix on the Łojasiewicz exponents in the real-analytic framework. The second part is a short survey of more recent results directly related to the content of the seminar.The first part begins with the definition and elementary properties of the ν ¯ order function associated to an ideal I of a reduced analytic algebra A . Denoting by ν I ( x ) the largest power of I containing the element x A , one defines ν ¯ I ( x ) = lim i ν I ( x k ) / k . The second paragraph is devoted to the equivalent definitions of the integral closure of an ideal in complex analytic geometry, one of them being I ¯ = { x A / ν ¯ I ( x ) 1 } . The third paragraph describes the normalized blowing-up of an ideal and the fourth explains how to compute ν ¯ I ( x ) with the help of the normalized blowing-up of the ideal I . It contains the basic finiteness results of the seminar, such as the rationality of ν ¯ I ( x ) (which had been proved by Nagata in algebraic geometry, a fact of which we were not aware at the time), the definitions of the fractional powers of coherent sheaves of ideals and the proof of their coherency. Given a coherent sheaf of 𝒪 X -ideals on a reduced analytic space X one can define for each open set U of X and f Γ ( U , 𝒪 X ) the number ν ¯ U ( f ) as the infimum of the ν ¯ y ( f y ) for y U .Then one defines for each positive real number ν the sheaf ν ¯ (resp. ν + ¯ ) associated to the presheaf U { f Γ ( U , 𝒪 X ) / ν ¯ U ( f ) ν } (resp. U { f Γ ( U , 𝒪 X ) / ν ¯ U ( f ) > ν } ) . Finally one has the graded 𝒪 X / -algebra gr ¯ 𝒪 X = ν 0 ν ¯ / ν + ¯ . One important result is then that this algebra is locally finitely generated and that locally there is a universal denominator q in the sense that all nonzero homogeneous components of the graded algebra have degree in 1 q .In § 5 it is shown that one can compute ν ¯ using analytic arcs h : ( , 0 ) ( X , x ) , and § 6 shows that Łojasiewicz exponents are the inverses of ν ¯ , which implies that they are rational.Risler’s appendix shows how to use blowing-ups to compute Łojasiewicz exponents and prove their rationality in the real analytic case.The complements, added for this publication, point to some developments directly related to the subject of the seminar:The first one is the proof in the spirit of the seminar of the classical Łojasiewicz inequality | grad ( f ( z ) ) | C 1 | f ( z ) | θ with θ < 1 .Then we point to later work which shows that in fact given an ideal I and an element f A the rational number ν ¯ I ( f ) can be seen as the slope of one of the sides of a natural Newton polygon associated to I and f , which is in several ways a better indicator of the relations of the powers of f with the powers of I and has some useful incarnations. The third complement points to results of Izumi using ν ¯ to characterize the Gabrielov rank condition for a morphism of analytic algebras, the fourth is a presentation of a generalization due to Ciuperča, Enescu and Spiroff of the rationality of ν ¯ to the case of several ideals, where it becomes the rationality of a certain polyhedral cone.The fifth comment presents the connection of ν ¯ with the type of ideals, which was introduced by D’Angelo in complex analysis and used recently by Heier for the proof of an effective Nullstellensatz. In the middle 1980’s, A. Płoski, J. Chadzyński and T. Krasiński found methods of evaluation for the local and global Łojasiewicz exponents in inequalities of the form | P ( z ) | C | z | θ where either P = ( P 1 , ... , P k ) is a collection of analytic functions on n having an isolated zero at the origin and the inequality should be true for | z | small enough, or P is a collection of polynomials with finitely many common zeroes and the inequality should be true for | z | large enough. The results on the type are of the same nature, because it follows from the seminar that the type is in fact a Łojasiewicz exponent.The sixth comment points to results of Morales and others about the Hilbert function associated to the integrally closed powers I n ¯ of a primary ideal in an excellent local ring and the associated graded algebra.Finally we point to two different but not unrelated uses of what is in fact the main object of study in the seminar: the reduced graded ring gr ¯ I A defined and studied in § 4. In [T5] the second author uses the fact that for the local algebra 𝒪 of a plane analytic branch the algebra gr ¯ m 𝒪 is the algebra of the semigroup associated to the singularity and is a complete intersection (a result due to the first author) to revisit the local moduli problem. The key is that the local analytic algebra 𝒪 of every plane branch in the same equisingularity class has the same gr ¯ m 𝒪 because it has the same semigroup, so that the branch is a deformation of the monomial curve corresponding to that algebra. In [Kn], Allen Knutson uses the same specialization to the “balanced normal cone" corresponding to gr ¯ I A in intersection theory.Each paragraph has its own bibliography. Unfortunately at the time of the seminar we were unaware of the beautiful results of Samuel, Rees and Nagata (see [Sa], [N], [R1], [R2], [R3] in the bibliography of the complements), of which it appears a posteriori that some parts of the seminar are translations into the complex analytic framework. The demand for this text over the years, however, and the fact that some mathematicians are led to rediscover some of its results, indicate that its publication is probably of some use.

How to cite


Lejeune-Jalabert, Monique, and Teissier, Bernard. "Clôture intégrale des idéaux et équisingularité." Annales de la faculté des sciences de Toulouse Mathématiques 17.4 (2008): 781-859. <>.

author = {Lejeune-Jalabert, Monique, Teissier, Bernard},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Rees valuation; Lojasiewicz's number; integral closure; graded associated ring; toric ring; blow-up; normalized blow-up},
language = {fre},
month = {6},
number = {4},
pages = {781-859},
publisher = {Université Paul Sabatier, Toulouse},
title = {Clôture intégrale des idéaux et équisingularité},
url = {},
volume = {17},
year = {2008},

AU - Lejeune-Jalabert, Monique
AU - Teissier, Bernard
TI - Clôture intégrale des idéaux et équisingularité
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2008/6//
PB - Université Paul Sabatier, Toulouse
VL - 17
IS - 4
SP - 781
EP - 859
LA - fre
KW - Rees valuation; Lojasiewicz's number; integral closure; graded associated ring; toric ring; blow-up; normalized blow-up
UR -
ER -


  1. Bourbaki (N.).— Algèbre commutative, Chapitres 5 et 6,  Hermann. 
  2. Grothendieck (A.).— Éléments de géométrie algébrique, IV, Publications de l’IHES, PUF. Zbl0135.39701
  3. Rees (D.).— a -transforms of local rings and a theorem on multiplicities of ideals, Proceedings Camb. Philos., 57, 1, 8–17. Zbl0111.24803MR118750
  4. Zariski (O.), Samuel (P.).— Commutative algebra, Vol.I, Chap. V et Vol. II  Appendice 4 Van Nostrand (1960). Zbl0081.26501MR90581
  5. Bourbaki (N.).— Algèbre commutative, chapitres 3 et 4,  Hermann. 
  6. Frisch (J.).— Points de platitude d’un morphisme d’espaces analytiques complexes, Inventiones, 4, 118-138 (1967). Zbl0167.06803MR222336
  7. Cartan (H.).— Familles d’espaces complexes et fondement de la géométrie analytique, Séminaire Henri Cartan, 13, 2, 1960–1961. Zbl0124.24105
  8. Lejeune (M.), Teissier (B.).— Contribution à l’étude des singularités du point de vue du polynôme de Newton, Thèse, Paris VII (1973). MR379896
  9. Lejeune (M.), Teissier (B.).— Transversalité, polygone de Newton et installations, Astérisque 7.8 (1973). Zbl0298.14002MR379896
  10. Zariski (O.), Samuel (P.).— Commutative algebra, Van Nostrand, 1960. Zbl0121.27801MR120249
  11. Bochnack (J.), Risler (J.-J.).— Sur les exposants de Łojasiewicz, Comment. Mat. Helvetici 50 (1975). Zbl0321.32006
  12. Hironaka (H.).— Introduction to real-analytic sets and real-analytic maps, Quaderni dei Gruppi di Ricerca Matematica del Consiglio Nazionale delle Ricerche. Istituto Matematico « L. Tonelli » dell’Università di Pisa, Pisa, 1973. MR477121
  13. Milnor (J.).— Singular points of complex hypersurfaces, Annals of Math. Studies no. 61 Princeton University Press, (1968). Zbl0184.48405MR239612
  14. Risler (J.-J.).— Le théorème des zéros en géométrie algébrique et analytique réelles, (1976). Zbl0328.14001MR417167
  15. Böger (E.).— Einige Bemerkungen zur theorie der ganzalgebraischen Abhängigkeit in Idealen, Math. Ann., 185, 303-308 (1970). Zbl0184.29003MR263809
  16. Bondil (R.).— Geometry of superficial elements, Ann. Fac. Sci. Toulouse Math. (6) 14, no. 2, 185-200 (2005). Zbl1101.13003MR2141180
  17. Brumfiel (G. W.).— Real valuation rings and ideals, Springer L.N.M., No. 959 (1981). Zbl0519.13002MR683129
  18. Cassou-Noguès (P.).— Courbes de semi-groupe donné, Rev. Mat. Univ. Complut. Madrid 4, no. 1, 13-44 (1991). Zbl0755.14010MR1142547
  19. Ciuperča (C.), Enescu (F.), Spiroff (S.).— Asymptotic growth of powers of ideals, ArXiv : Math. AC/0610774. Zbl1137.13002MR2346184
  20. Chadzyński (J.), Krasiński (T.).— The Łojasiewicz exponent of an analytic function of two complex variables at an isolated zero, Singularities 1985, Banach Center publications 20, PWN Varsovie (1988). Zbl0674.32004
  21. Chadzyński (J.), Krasiński (T.).— A set on which the local Łojasiewicz exponent is attained, Annales Polon. Math., 67, 297-301 (1997). Zbl0912.32027MR1482912
  22. Huneke (C.), Swanson (I.).— Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge. xiv+431 (2006). Zbl1117.13001MR2266432
  23. D’Angelo (J. P.).— Real hypersurfaces, orders of contact, and applications, Annals of Math., (2), 115(3), 615-637 (1982). Zbl0488.32008MR657241
  24. Ein (L.), Lazarsfeld (R.).— A geometric effective Nullstellensatz, Invent. Math., 137(2), 427-448 (1999). Zbl0944.14003MR1705839
  25. Fekak (A.).— Interpretation algébrique de l’exposant de Łojasiewicz, Annales Polonici Mathematici, LVI, 2, 123-131 (1992). Zbl0773.14027MR1159983
  26. Fekak (A.).— Exposants de Łojasiewicz pour les fonctions semi-algébriques, C.R.A.S. Paris, t. 310, Série 1, 193-196 (1990). Zbl0706.14036
  27. Fulton (W.).— Intersection Theory, Springer (1983). Zbl0541.14005MR732620
  28. Gaffney (T.).— Integral closure of modules and Whitney equisingularity, Invent. Math, 107, 301-322 (1992). Zbl0807.32024MR1144426
  29. Gaffney (T.).— Polar multiplicities and equisingularity of map-germs, Topology, Vol. 32, No.1, 185-223 (1993). Zbl0790.57020MR1204414
  30. Gaffney (T.).— Multiplicities and equisingularity of ICIS germs, Inventiones Math., 123, 209-220 (1996). Zbl0846.32024MR1374196
  31. Gaffney (T.).— The theory of integral closure of ideals and modules : applications and new developments With an appendix by Steven Kleiman and Anders Thorup. NATO Sci. Ser. II Math. Phys. Chem., 21, New developments in singularity theory (Cambridge, 2000), 379-404, Kluwer Acad. Publ., Dordrecht, (2001). Zbl1007.32019MR1849317
  32. Gerstenhaber (M.).— On the deformation of rings and algebras, II. Ann. of Math. 84, 1-19 (1966). Zbl0147.28903MR207793
  33. Gwoździewicz (J.).— The Lojasiewicz exponent at an isolated zero, Commentari Math.Helvetici 74, 364-375 (1999). Zbl0948.32028MR1710702
  34. Gaffney (T.), Kleiman (S.L.).— Specialization of integral dependence for modules, Inv. Math., 137, no. 3, 541-574 (1999). Zbl0980.32009MR1709870
  35. Gaffney (T.), Kleiman (S.).— W f and integral dependence, Real and Complex singularities (Sao Carlos, 1998) Chapman and Hall//CRC Res. Notes in Math., 412, 33-45, Chapman and Hall//CRC Boca Raton, Florida, (2000). Zbl0945.32011MR1715693
  36. García Barroso (E.).— Sur les courbes polaires d’une courbe plane réduite, Proc. London Math. Soc. (3) 81, 1-28 (2000). Zbl1041.14008MR1756330
  37. García Barroso (E.), Gwoździewicz (J.).— Characterization of jacobian Newton polygons of branches, Manuscrit, (2007). 
  38. García Barroso (E.), Płoski (A.).— On the Łojasiewicz numbers, C. R. Acad. Sci. Paris, Ser. I., 336, 585-588 (2003). Zbl1032.32013MR1981473
  39. García Barroso (E.), Krasiński (T.), Płoski (A.).— On the Łojasiewicz numbers, II, C. R. Acad. Sci. Paris, Ser. I., 341, 357-360 (2005). Zbl1089.32016MR2169152
  40. García Barroso (E.), Krasiński (T.), Płoski (A.).— The Łojasiewicz numbers and plane curve singularities, Ann. Pol. Math., 87, 127-150 (2005). Zbl1095.32010MR2208541
  41. Goldin (R.), Teissier (B.).— Resolving plane branch singularities with one toric morphism, in « Resolution of Singularities, a research textbook in tribute to Oscar Zariski”, Birkhäuser, Progress in Math. No. 18, 315-340 (2000). Zbl0995.14002MR1748626
  42. Heier (G.).— Finite type and the effective Nullstellensatz, ArXiv : Math/AG 0603666. Zbl1149.14047MR2440293
  43. Hickel (M.).— Solution d’une conjecture de C. Berenstein-A. Yger et invariants de contact à l’infini, Ann. Inst. Fourier (Grenoble), 51, No.3, 707-744 (2001). Zbl0991.13009MR1838463
  44. Huneke (C.).— Tight closure and its applications, C.B.M.S. Lecture Notes 88, A.M.S., Providence (1996). Zbl0930.13004MR1377268
  45. Huneke (C.), Swanson (I.).— Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, (2006). Zbl1117.13001MR2266432
  46. Hermann (M.), Ikeda (S.), Orbanz (U.).— Equimultiplicity and blowing up, an algebraic study, with an appendix by Boudewin Moonen, Springer Verlag, (1988). Zbl0649.13011MR954831
  47. Heier (G.), Lazarsfeld (R.).— Curve selection for finite type ideals, ArXiv : Math/CV0506557. 
  48. Izumi (S.).— A measure of integrity for local analytic algebras, Publ. R.I.M.S., Kyoto University, 21, 4, 719-735 (1985). Zbl0587.32016MR817161
  49. Izumi (S.).— Gabrielov’s rank condition is equivalent to an inequality of reduced orders, Math. Annalen, 276, 81-87 (1986). Zbl0612.32013MR863708
  50. Izumi (S.).— Fundamental properties of germs of analytic mappings of analytic sets and related topics, Real and Complex singularities, Proceedings of the Australian-Japanese Workshop, University of Sidney 2005, L. Paunescu, A. Harris, T. Fukui, S. Koike, Editors. World Scientific, 109-123 (2007). Zbl1125.32014MR2336684
  51. Kleiman (S. L.).— Equisingularity, multiplicity, and dependance, Commutative algebra and algebraic geometry (Ferrara), 211-225, Lecture Notes in Pure and Applied Math., 206, Dekker, New York, (1999). Zbl0939.32026MR1702106
  52. Kleiman (S.L), Thorup (A.).— A geometric theory of the Buchsbaum-Rim multiplicity, J. Algebra, 167, (1), 168-231 (1994). Zbl0815.13012MR1282823
  53. Knutson (A.).— Balanced normal cones and Fulton-MacPherson’s intersection theory, Pure Appl. Math. Q. 2, no. 4, 1103-1130 (2006). Zbl1110.14011MR2282415
  54. Lazarsfeld (R.).— Positivity in algebraic geometry II, Ergebnisse der Mathematik vol. 49, Springer Verlag (2004). Zbl1093.14500MR2095472
  55. Lenarcik (A.).— On the jacobian Newton polygon of plane curve singularities, Soumis. Zbl1139.32014
  56. Morales (M.).— Le polynôme de Hilbert-Samuel associé à la filtration par les clôtures intégrales des puissances de l’idéal maximal pour une courbe plane. C. R. Acad. Sci. Paris Sér. A-B 289, no. 6, A401-A404 (1979). Zbl0426.14012MR554956
  57. Morales (M.).— Polynôme d’Hilbert-Samuel des clôtures intégrales des puissances d’un idéal m -primaire. Bull. Soc. Math. France 112, no. 3, 343-358 (1984). Zbl0558.13003MR794736
  58. Morales (M.).— Clôture intégrale d’idéaux et anneaux gradués Cohen-Macaulay. Géométrie algébrique et applications, I (La Rábida, 1984), 151-171, Travaux en Cours, 22, Hermann, Paris (1987). Zbl0646.13003MR907911
  59. Milnor (J.).— Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton U.P. (1968). Zbl0184.48405MR239612
  60. Morales (M.), Trung (N.), Villamayor (O.).— Sur la fonction de Hilbert-Samuel des clôtures intégrales des puissances d’idéaux engendrés par un système de paramètres. J. Algebra 129, no. 1, 96-102 (1990). Zbl0701.13004MR1037394
  61. McNeal (J. D.), Némethi (A.).— The order of contact of a holomorphic ideal in 2 , Math. Z., 250, no. 4, 873-883 (2005). Zbl1083.32017MR2180379
  62. Nágata (M.).— Note on a paper of Samuel concerning asymptotic properties of powers of ideals, Mem. Coll. Sci. Univ. Kyoto, Series A, Math., 30, 165-175 (1957). Zbl0095.02305MR89836
  63. Northcott (D. G.).— Lessons on Rings, Modules, and Multiplicities, University Press, Cambridge, (1968). Zbl0159.33001MR231816
  64. Northcott (D. G.), Rees (D.).— Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50, 145-158 (1954). Zbl0057.02601MR59889
  65. Philippon (P.).— Dénominateurs dans le théorème des zéros de Hilbert, Acta Arithm., 58 1, 1-25 (1991). Zbl0679.13010MR1111087
  66. Płoski (A.).— On the growth of proper polynomial mappings, Annales Polonici Math., XLV, 297-309 (1985). Zbl0584.32006MR817547
  67. Płoski (A.).— Remarque sur la multiplicité d’intersection des branches planes, Bull. Pol. Acad. Sci. Math., 33 No. 11-12, 601-605 (1985). Zbl0606.32001MR849408
  68. Płoski (A.).— Multiplicity and the Łojasiewicz exponent, in : “Singularities", Banach Center publications, 353-364 (1988). Zbl0661.32018
  69. Popov (V. L.).— Contraction of the action of reductive algebraic groups, Math. USSR Sbornik, 58, no. 2, 311-335 (1987). Zbl0627.14033MR865764
  70. Pham (F.), Teissier (B.).— Saturation Lipschitzienne d’une algèbre analytique complexe et saturation de Zariski, Preprint 1969. Fichier .pdf disponible sur MR590058
  71. Polini (C.), Ulrich (B.), Vasconcelos (W. V.).— Normalization of ideals and Briançon-Skoda numbers, Math. Res. Lett. 12, no. 5-6, 827-842 (2005). Zbl1105.13005MR2189243
  72. Rees (D.).— Valuations associated with ideals, Proc. London Math. Soc. (3) 6, 161-174 (1956). Zbl0074.26302MR77513
  73. Rees (D.).— valuations associated with ideals, II, J. London Math. Soc. 31, 221-228 (1956). Zbl0074.26303MR78971
  74. Rees (D.).— Degree functions in local rings, Proc. Camb. Phil. Soc., 57, 1-7 (1961). Zbl0111.24901MR124353
  75. Rees (D.).— A-transforms of local rings and a theorem on multiplicities of ideals, Proc. Camb. Phil. Soc., 57, 8-17 (1961). Zbl0111.24803MR118750
  76. Rees (D.).— Local birational Geometry, Actas del Coloquio internacional sobre Geometría algebraica, Madrid, Sept. (1965). Zbl0146.17003MR220724
  77. Rees (D.).— Multiplicities, Hilbert functions and degree functions, Commutative Algebra-Durham 1981, London Math. Soc. Lectures Notes 72 (Ed. R.Y. Sharp, University Press, Cambridge 1983), pp 170-178. Zbl0515.13020MR693635
  78. Rees (D.).— Hilbert functions and pseudo-rational local rings of dimension two, J. London Math. Soc. (2), 24, 467-479 (1981). Zbl0492.13012MR635878
  79. Rees (D.).— Rings associated with ideals and analytic spread, Math. Proc. Camb. Phil. Soc., 89, 423-432 (1981). Zbl0491.13014MR602297
  80. Rees (D.).— Generalizations of reductions and mixed multiplicities, J. London Math. Soc., (2), 29, 397-414 (1984). Zbl0572.13005MR754926
  81. Rees (D.).— The general extension of a local ring and mixed multiplicities, Springer Lecture Notes in mathematics No. 1183, 339-360 (1986). Zbl0588.13021MR846458
  82. Rees (D.).— Asymptotic properties of ideals, London Math. Soc. Lecture Series, 113 (1988). Zbl0669.13001
  83. Rees (D.).— Izumi’s theorem, Commutative Algebra (Berkeley, CA., 1987), Math. Sci. Res. Inst. Publications, 15, Springer New-York (1989). Zbl0741.13011MR1015531
  84. Rees (D.), Sharp (R. Y.).— On a Theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc., (2), 18, 449-463 (1978). Zbl0408.13009MR518229
  85. Samuel (P.), Some asymptotic properties of powers of ideals, Annals of Math., (2), 56, 11-21 (1952). Zbl0049.02301MR49166
  86. Teissier (B.).— Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse, Astérisque No. 7-8, S.M.F., 285-362 (1973). Zbl0295.14003MR374482
  87. Teissier (B.).— Jacobian Newton polyhedra and equisingularity, Proceedings R.I.M.S. Conference on singularities, Kyoto, April 1978. (Publ. R.I.M.S. 1978) et traduction dans : Séminaire sur les singularités, Publ. Math. Université Paris VII no.7, (1980), 193-211. Fichier .pdf disponible sur MR683624
  88. Teissier (B.).— Variétés polaires I ; invariants polaires des singularités d’hypersurfaces, Inventiones Math. 40, 267-292 (1977). Zbl0446.32002MR470246
  89. Teissier (B.).— Variétés polaires II ; multiplicités polaires, sections planes, et conditions de Whitney, Proc. Conf. Algebraic Geometry, La Rábida, Springer Lecture Notes in Math., no. 961, 314-491. Zbl0585.14008MR708342
  90. Teissier (B.).— Appendice : la courbe monomiale et ses déformations, in : Oscar Zariski, « Le problème des modules pour les branches planes », Publ. Ecole Polytechnique, Paris 1975, reprinted by Hermann ed., Paris, 1986, English translation by Ben Lichtin in The moduli problem for plane branches, University Lecture Series, Vol. 39, A.M.S., (2006). MR861277
  91. Teissier (B.).— The Hunting of invariants in the Geometry of discriminants, in : Real and complex singularities, Oslo 1976, Per Holm editeur, Sijthoff & Noordhoff, p. 565-677 ( 1977). Zbl0388.32010MR568901
  92. Teissier (B.).— Résolution simultanée II, in Séminaire sur les Singularités des Surfaces, Lecture Notes in Mathematics, No. 777. Springer, Berlin, 1980. 82-146. Fichier .pdf disponible sur Zbl0464.14005MR579026
  93. Wolmer (V.).— Integral closure, Rees algebras, multiplicities, algorithms, Springer Monographs in Mathematics. Springer-Verlag, Berlin (2005). Zbl1082.13006MR2153889
  94. Hà Huy (V.), Tien So’n (P.).— Newton-Puiseux approximation and Łojasiewicz exponents, Kodai Math. J. 26, no. 1, 1-15 (2003). Zbl1047.32006MR1966678
  95. Zariski (O.).— Le problème des modules pour les branches planes, Publ. Ecole Polytechnique, Paris 1975, reprinted by Hermann ed., Paris, 1986, English translation by Ben Lichtin in The moduli problem for plane branches, University Lecture Series, Vol. 39, A.M.S., (2006). Zbl0317.14004MR861277

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.